To find the sum of all possible values of \(\lambda\) for which the shortest distance between the given lines is \(\frac{6}{\sqrt{5}}\), we proceed as follows:
The given lines are:
The general form of the equations of the lines are:
The shortest distance \(d\)\) between two skew lines \(\mathbf{r}_1 = \mathbf{a}_1 + t\mathbf{b}_1\) and \(\mathbf{r}_2 = \mathbf{a}_2 + s\mathbf{b}_2\) is given by:
Here, \(\mathbf{a}_1 = \langle 4, -1, 0 \rangle\), \(\mathbf{b}_1 = \langle 1, 2, -3 \rangle\), \(\mathbf{a}_2 = \langle \lambda, -1, 2 \rangle\), and \(\mathbf{b}_2 = \langle 2, 4, -5 \rangle\).
First compute the cross product \((\mathbf{b}_1 \times \mathbf{b}_2)\):
\(\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} = \mathbf{i}(2 \times -5 - (-3)\times 4) - \mathbf{j}(1\times -5 -(-3)\times 2) + \mathbf{k}(1\times 4 - 2\times 2)\)
\(= \mathbf{i}(-10 + 12) - \mathbf{j}(-5 + 6) + \mathbf{k}(4 - 4)\)
\(= \mathbf{i}(2) - \mathbf{j}(1) + \mathbf{k}(0)\)
\(= \langle 2, -1, 0 \rangle\)
Now, compute \((\mathbf{a}_2 - \mathbf{a}_1)\):
\(= \langle \lambda - 4, 0, 2 \rangle\)
Compute the dot product \((\mathbf{a}_2 - \mathbf{a}_1) \cdot (\mathbf{b}_1 \times \mathbf{b}_2)\):
\(= (\langle \lambda - 4, 0, 2 \rangle) \cdot \langle 2, -1, 0 \rangle\)
\(= 2(\lambda - 4) + 0\right)\)
\(= 2\lambda - 8\)
The magnitude of \((\mathbf{b}_1 \times \mathbf{b}_2)\): \(|\langle 2, -1, 0 \rangle| = \sqrt{2^2 + (-1)^2 + 0^2} = \sqrt{5}\)
Setting up the equation for the shortest distance:
\(\frac{|2\lambda - 8|}{\sqrt{5}} = \frac{6}{\sqrt{5}}\)
Therefore, \(|2\lambda - 8| = 6\)
This gives two equations:
The possible values of \(\lambda\) are \(7\) and \(1\). Therefore, the sum of all possible values is:
Sum = \(7 + 1 = 8\)
Thus, the sum of all possible values of \(\lambda\) is \(8\).
Given:
\(\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx = a + b \sqrt{2} + c \sqrt{3}\)
where \(a, b, c\) are rational numbers.
Step 1. Simplifying the Integral: Consider
\(\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx\)
Rationalizing the denominator:
\(\int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{(3 + x) - (1 + x)} \, dx = \int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{2} \, dx\)
Therefore:
\(= \frac{1}{2} \int_0^1 \left( \sqrt{3 + x} - \sqrt{1 + x} \right) \, dx\)
Step 2. Separating the Integral:
\(= \frac{1}{2} \left( \int_0^1 \sqrt{3 + x} \, dx - \int_0^1 \sqrt{1 + x} \, dx \right)\)
Step 3. Evaluating Each Integral:
- For \(\int_0^1 \sqrt{3 + x} \, dx \:\)
\(\int \sqrt{3 + x} \, dx = \frac{2}{3} (3 + x)^{3/2}\)
Evaluating from 0 to 1:
\(\frac{2}{3} \left( (3 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (4)^{3/2} - (3)^{3/2} \right) = \frac{2}{3} (8 - 3\sqrt{3})\)
For\(\int_0^1 \sqrt{1 + x} \, dx\):
\(\int \sqrt{1 + x} \, dx = \frac{2}{3} (1 + x)^{3/2}\)
Evaluating from 0 to 1:
\(\frac{2}{3} \left( (1 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (2)^{3/2} - (1)^{3/2} \right) = \frac{2}{3} (2\sqrt{2} - 1)\)
Step 4. Combining the Results:
\(\frac{1}{2} \left( \frac{2}{3} (8 - 3\sqrt{3}) - \frac{2}{3} (2\sqrt{2} - 1) \right)\)
Simplifying:
\(\frac{1}{3} (8 - 3\sqrt{3} - 2\sqrt{2} + 1) = \frac{1}{3} (9 - 3\sqrt{3} - 2\sqrt{2})\)
Thus:
\(a = 3, \quad b = -\frac{2}{3}, \quad c = -1\)
Step 5. Calculating \( 2a + 3b - 4c \):
\(2a + 3b - 4c = 2 \times 3 + 3 \times \left( -\frac{2}{3} \right) - 4 \times (-1)\)
\(= 6 − 2 + 4 = 8\)
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 