Given:
\(\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx = a + b \sqrt{2} + c \sqrt{3}\)
where \(a, b, c\) are rational numbers.
Step 1. Simplifying the Integral: Consider
\(\int_0^1 \frac{1}{\sqrt{3 + x} + \sqrt{1 + x}} \, dx\)
Rationalizing the denominator:
\(\int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{(3 + x) - (1 + x)} \, dx = \int_0^1 \frac{\sqrt{3 + x} - \sqrt{1 + x}}{2} \, dx\)
Therefore:
\(= \frac{1}{2} \int_0^1 \left( \sqrt{3 + x} - \sqrt{1 + x} \right) \, dx\)
Step 2. Separating the Integral:
\(= \frac{1}{2} \left( \int_0^1 \sqrt{3 + x} \, dx - \int_0^1 \sqrt{1 + x} \, dx \right)\)
Step 3. Evaluating Each Integral:
- For \(\int_0^1 \sqrt{3 + x} \, dx \:\)
\(\int \sqrt{3 + x} \, dx = \frac{2}{3} (3 + x)^{3/2}\)
Evaluating from 0 to 1:
\(\frac{2}{3} \left( (3 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (4)^{3/2} - (3)^{3/2} \right) = \frac{2}{3} (8 - 3\sqrt{3})\)
For\(\int_0^1 \sqrt{1 + x} \, dx\):
\(\int \sqrt{1 + x} \, dx = \frac{2}{3} (1 + x)^{3/2}\)
Evaluating from 0 to 1:
\(\frac{2}{3} \left( (1 + x)^{3/2} \right) \Big|_0^1 = \frac{2}{3} \left( (2)^{3/2} - (1)^{3/2} \right) = \frac{2}{3} (2\sqrt{2} - 1)\)
Step 4. Combining the Results:
\(\frac{1}{2} \left( \frac{2}{3} (8 - 3\sqrt{3}) - \frac{2}{3} (2\sqrt{2} - 1) \right)\)
Simplifying:
\(\frac{1}{3} (8 - 3\sqrt{3} - 2\sqrt{2} + 1) = \frac{1}{3} (9 - 3\sqrt{3} - 2\sqrt{2})\)
Thus:
\(a = 3, \quad b = -\frac{2}{3}, \quad c = -1\)
Step 5. Calculating \( 2a + 3b - 4c \):
\(2a + 3b - 4c = 2 \times 3 + 3 \times \left( -\frac{2}{3} \right) - 4 \times (-1)\)
\(= 6 − 2 + 4 = 8\)