Required area = \( \text{Ar}( \text{circle from 0 to 2}) - \text{Ar}(\text{para from 0 to 2}) \)
\( = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx \)
\( = \left[ \dfrac{x}{2} \sqrt{8 - x^2} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{x}{2\sqrt{2}}\right) \right]_0^2 - \sqrt{2} \left[ \dfrac{x\sqrt{x}}{3/2} \right]_0^2 \)
\( = \dfrac{2}{2} \sqrt{8 - 4} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{2}{2\sqrt{2}}\right) - \dfrac{2}{2\sqrt{2}} \left( 2\sqrt{2} - 0 \right) \)
\( \Rightarrow 2 + 4 \cdot \dfrac{\pi}{4} - \dfrac{8}{3} = \pi - \dfrac{2}{3} \)

Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
