Required area = \( \text{Ar}( \text{circle from 0 to 2}) - \text{Ar}(\text{para from 0 to 2}) \)
\( = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx \)
\( = \left[ \dfrac{x}{2} \sqrt{8 - x^2} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{x}{2\sqrt{2}}\right) \right]_0^2 - \sqrt{2} \left[ \dfrac{x\sqrt{x}}{3/2} \right]_0^2 \)
\( = \dfrac{2}{2} \sqrt{8 - 4} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{2}{2\sqrt{2}}\right) - \dfrac{2}{2\sqrt{2}} \left( 2\sqrt{2} - 0 \right) \)
\( \Rightarrow 2 + 4 \cdot \dfrac{\pi}{4} - \dfrac{8}{3} = \pi - \dfrac{2}{3} \)

If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.