Required area = \( \text{Ar}( \text{circle from 0 to 2}) - \text{Ar}(\text{para from 0 to 2}) \)
\( = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx \)
\( = \left[ \dfrac{x}{2} \sqrt{8 - x^2} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{x}{2\sqrt{2}}\right) \right]_0^2 - \sqrt{2} \left[ \dfrac{x\sqrt{x}}{3/2} \right]_0^2 \)
\( = \dfrac{2}{2} \sqrt{8 - 4} + \dfrac{8}{2} \sin^{-1}\left(\dfrac{2}{2\sqrt{2}}\right) - \dfrac{2}{2\sqrt{2}} \left( 2\sqrt{2} - 0 \right) \)
\( \Rightarrow 2 + 4 \cdot \dfrac{\pi}{4} - \dfrac{8}{3} = \pi - \dfrac{2}{3} \)

If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 