The given mean is:
\[ \bar{x} = 10 \implies \frac{\Sigma x_i}{20} = 10. \]
Thus:
\[ \Sigma x_i = 10 \times 20 = 200. \]
When the incorrect observation (8) is replaced with the correct value (12):
\[ \Sigma x_i = 200 - 8 + 12 = 204. \]
The corrected mean is:
\[ \bar{x} = \frac{\Sigma x_i}{20} = \frac{204}{20} = 10.2. \]
The standard deviation (S.D.) is given as:
\[ \text{S.D.}^2 = \text{Variance} = 2^2 = 4. \]
From the variance formula:
\[ \frac{\Sigma x_i^2}{20} - \left(\frac{\Sigma x_i}{20}\right)^2 = 4. \]
Substitute:
\[ \frac{\Sigma x_i^2}{20} - 10^2 = 4. \] \[ \frac{\Sigma x_i^2}{20} = 104 \implies \Sigma x_i^2 = 2080. \]
After replacing 8 with 12:
\[ \Sigma x_i^2 = 2080 - 8^2 + 12^2 = 2080 - 64 + 144 = 2160. \]
The corrected variance is:
\[ \frac{\Sigma x_i^2}{20} - \left(\frac{\Sigma x_i}{20}\right)^2. \] \[ \frac{2160}{20} - (10.2)^2. \] \[ \frac{\Sigma x_i^2}{20} = 108, \quad (10.2)^2 = 104.04. \] \[ \text{Variance} = 108 - 104.04 = 3.96. \]
The corrected standard deviation is:
\[ \text{S.D.} = \sqrt{3.96}. \]
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: