The given mean is:
\[ \bar{x} = 10 \implies \frac{\Sigma x_i}{20} = 10. \]
Thus:
\[ \Sigma x_i = 10 \times 20 = 200. \]
When the incorrect observation (8) is replaced with the correct value (12):
\[ \Sigma x_i = 200 - 8 + 12 = 204. \]
The corrected mean is:
\[ \bar{x} = \frac{\Sigma x_i}{20} = \frac{204}{20} = 10.2. \]
The standard deviation (S.D.) is given as:
\[ \text{S.D.}^2 = \text{Variance} = 2^2 = 4. \]
From the variance formula:
\[ \frac{\Sigma x_i^2}{20} - \left(\frac{\Sigma x_i}{20}\right)^2 = 4. \]
Substitute:
\[ \frac{\Sigma x_i^2}{20} - 10^2 = 4. \] \[ \frac{\Sigma x_i^2}{20} = 104 \implies \Sigma x_i^2 = 2080. \]
After replacing 8 with 12:
\[ \Sigma x_i^2 = 2080 - 8^2 + 12^2 = 2080 - 64 + 144 = 2160. \]
The corrected variance is:
\[ \frac{\Sigma x_i^2}{20} - \left(\frac{\Sigma x_i}{20}\right)^2. \] \[ \frac{2160}{20} - (10.2)^2. \] \[ \frac{\Sigma x_i^2}{20} = 108, \quad (10.2)^2 = 104.04. \] \[ \text{Variance} = 108 - 104.04 = 3.96. \]
The corrected standard deviation is:
\[ \text{S.D.} = \sqrt{3.96}. \]