To find the shortest distance between two skew lines given in vector form, we use the formula:
\(D = \frac{|(\mathbf{b_1} - \mathbf{b_2}) \cdot (\mathbf{a_1} \times \mathbf{a_2})|}{|\mathbf{a_1} \times \mathbf{a_2}|}\)
Here:
The cross product is given by:
\(\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix}\)
Calculating the determinant, we have:
\(|\mathbf{a_1} \times \mathbf{a_2}| = \sqrt{16^2 + 16^2 + 16^2} = \sqrt{768} = 16\sqrt{3}\)
\(= (3 + 1)\mathbf{i} + (-15 - 1)\mathbf{j} + (9 - 9)\mathbf{k}\)
\(= 4\mathbf{i} - 16\mathbf{j}\)
\(= |(4\mathbf{i} - 16\mathbf{j}) \cdot (16\mathbf{i} + 16\mathbf{j} + 16\mathbf{k})|\)
\(= |4 \times 16 + (-16) \times 16| = |64 - 256| = |-192| = 192\)
\(D = \frac{192}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}\)
Therefore, the shortest distance between the lines is \(4\sqrt{3}\).
The shortest distance between the given lines is calculated as:
\[ S.D. = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}. \]
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
