To find the shortest distance between two skew lines given in vector form, we use the formula:
\(D = \frac{|(\mathbf{b_1} - \mathbf{b_2}) \cdot (\mathbf{a_1} \times \mathbf{a_2})|}{|\mathbf{a_1} \times \mathbf{a_2}|}\)
Here:
- \(\mathbf{a_1}\) and \(\mathbf{a_2}\) are the direction vectors of the lines.
- \(\mathbf{b_1}\) and \(\mathbf{b_2}\) are position vectors of points on the lines.
Step-by-step Solution:
- Identify direction vectors:
- From the equation \(\frac{x - 3}{2} = \frac{y + 15}{-7} = \frac{z - 9}{5}\), the direction vector \(\mathbf{a_1}\) is \(2\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}\).
- From the equation \(\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z - 9}{-3}\), the direction vector \(\mathbf{a_2}\) is \(2\mathbf{i} + 1\mathbf{j} - 3\mathbf{k}\).
- Identify the position vectors of points on each line:
- A point on the first line can be \((3, -15, 9)\) giving position vector: \(\mathbf{b_1} = 3\mathbf{i} - 15\mathbf{j} + 9\mathbf{k}\).
- A point on the second line can be \((-1, 1, 9)\) giving position vector: \(\mathbf{b_2} = -1\mathbf{i} + 1\mathbf{j} + 9\mathbf{k}\).
- Compute \(\mathbf{a_1} \times \mathbf{a_2}\):
The cross product is given by:
\(\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix}\)
Calculating the determinant, we have:
- \(= \mathbf{i}((-7)(-3) - (5)(1)) - \mathbf{j}((2)(-3) - (5)(2)) + \mathbf{k}((2)(1) - (-7)(2))\)
- \(= \mathbf{i}(21 - 5) - \mathbf{j}(-6 - 10) + \mathbf{k}(2 + 14)\)
- \(= 16\mathbf{i} + 16\mathbf{j} + 16\mathbf{k}\)
- Calculate \(|\mathbf{a_1} \times \mathbf{a_2}|\):
\(|\mathbf{a_1} \times \mathbf{a_2}| = \sqrt{16^2 + 16^2 + 16^2} = \sqrt{768} = 16\sqrt{3}\)
- Compute \(\mathbf{b_1} - \mathbf{b_2}\):
\(= (3 + 1)\mathbf{i} + (-15 - 1)\mathbf{j} + (9 - 9)\mathbf{k}\)
\(= 4\mathbf{i} - 16\mathbf{j}\)
- Calculate \(|(\mathbf{b_1} - \mathbf{b_2}) \cdot (\mathbf{a_1} \times \mathbf{a_2})|\):
\(= |(4\mathbf{i} - 16\mathbf{j}) \cdot (16\mathbf{i} + 16\mathbf{j} + 16\mathbf{k})|\)
\(= |4 \times 16 + (-16) \times 16| = |64 - 256| = |-192| = 192\)
- Therefore, the shortest distance is:
\(D = \frac{192}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}\)
Therefore, the shortest distance between the lines is \(4\sqrt{3}\).