Given: For \( B' \):
\[ \frac{x - 7}{2} = \frac{y - 2}{1} = -2 \left( \frac{14 + 2 - 6}{5} \right) \]
\[ \frac{x - 7}{2} = \frac{y - 2}{1} = -4 \]
\[ x = -1, \quad y = -2 \implies B'(-1, -2) \]
Incident ray \( AB' \):
\[ M_{AB'} = 3 \]
\[ y + 2 = 3(x + 1) \]
\[ 3x - y + 1 = 0 \]
\[ a = 3, \quad b = -1 \]
\[ a^2 + b^2 + 3ab = 9 + 1 - 9 = 1 \]
Answer: 1
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: