Consider the given expression:
\[\left( \sqrt{ax^2} + \frac{1}{2x^3} \right)^{10}\]
The general term in the binomial expansion of \((x + y)^n\) is given by:
\[T_{r+1} = \binom{n}{r} x^{n-r} y^r.\]
For the given expression, the general term becomes:
\[T_{r+1} = \binom{10}{r} \left( \sqrt{ax^2} \right)^{10-r} \left( \frac{1}{2x^3} \right)^r.\]
Simplify the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} x^{(20-2r)} \times \frac{1}{(2x^3)^r}\]
Combine the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} \times \frac{1}{2^r} \times x^{20-5r}\]
To find the term independent of \(x\), set the power of \(x\) to zero:
\[20 - 5r = 0\]
Solve for \(r\):
\[r = 4\]
Substitute \(r = 4\) into the general term:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^{10-4} \times \frac{1}{2^4}\]
Simplify:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
Substitute \(\binom{10}{4} = 210\):
\[T_5 = 210 \times \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
\[T_5 = 210 \times \frac{a^3}{16}\]
The value of \(T_5\) is given as 105:
\[210 \times \frac{a^3}{16} = 105\]
Solve for \(a^3\):
\[a^3 = \frac{105 \times 16}{210}\]
\[a^3 = 8\]
Take the cube root of both sides:
\[a = \sqrt[3]{8}\]
\[a = 2\]
Finally, \(a^2 = 4\).
Answer: \((1) \ 4\)
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: