Consider the given expression:
\[\left( \sqrt{ax^2} + \frac{1}{2x^3} \right)^{10}\]
The general term in the binomial expansion of \((x + y)^n\) is given by:
\[T_{r+1} = \binom{n}{r} x^{n-r} y^r.\]
For the given expression, the general term becomes:
\[T_{r+1} = \binom{10}{r} \left( \sqrt{ax^2} \right)^{10-r} \left( \frac{1}{2x^3} \right)^r.\]
Simplify the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} x^{(20-2r)} \times \frac{1}{(2x^3)^r}\]
Combine the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} \times \frac{1}{2^r} \times x^{20-5r}\]
To find the term independent of \(x\), set the power of \(x\) to zero:
\[20 - 5r = 0\]
Solve for \(r\):
\[r = 4\]
Substitute \(r = 4\) into the general term:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^{10-4} \times \frac{1}{2^4}\]
Simplify:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
Substitute \(\binom{10}{4} = 210\):
\[T_5 = 210 \times \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
\[T_5 = 210 \times \frac{a^3}{16}\]
The value of \(T_5\) is given as 105:
\[210 \times \frac{a^3}{16} = 105\]
Solve for \(a^3\):
\[a^3 = \frac{105 \times 16}{210}\]
\[a^3 = 8\]
Take the cube root of both sides:
\[a = \sqrt[3]{8}\]
\[a = 2\]
Finally, \(a^2 = 4\).
Answer: \((1) \ 4\)