Consider the given expression:
\(\left(\sqrt{a}x^{2} + \frac{1}{2x^{3}}\right)^{10}\)
Step 1: General term
The general term of the expansion is given by:
\[
T_{r+1} = {}^{10}C_{r} (\sqrt{a}x^{2})^{10 - r} \left(\frac{1}{2x^{3}}\right)^{r}
\]
Step 2: Determine the power of \(x\)
Power of \(x\) in the general term is:
\[
2(10 - r) - 3r = 20 - 2r - 3r = 20 - 5r
\]
For the term independent of \(x\), we set the power of \(x\) to 0:
\[
20 - 5r = 0 \Rightarrow r = 4
\]
Step 3: Substitute \(r = 4\) in the general term
\[
T_{5} = {}^{10}C_{4} (\sqrt{a})^{6} \left(\frac{1}{2}\right)^{4}
\]
Simplifying further:
\[
{}^{10}C_{4} \cdot a^{3} \cdot \frac{1}{16} = 105
\]
Step 4: Solving for \(a\)
\[
105 = 210 \cdot \frac{a^{3}}{16} \Rightarrow a^{3} = 8
\]
Taking cube root on both sides:
\[
a^{2} = 4
\]
Consider the given expression:
\[\left( \sqrt{ax^2} + \frac{1}{2x^3} \right)^{10}\]
The general term in the binomial expansion of \((x + y)^n\) is given by:
\[T_{r+1} = \binom{n}{r} x^{n-r} y^r.\]
For the given expression, the general term becomes:
\[T_{r+1} = \binom{10}{r} \left( \sqrt{ax^2} \right)^{10-r} \left( \frac{1}{2x^3} \right)^r.\]
Simplify the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} x^{(20-2r)} \times \frac{1}{(2x^3)^r}\]
Combine the powers of \(x\):
\[T_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} \times \frac{1}{2^r} \times x^{20-5r}\]
To find the term independent of \(x\), set the power of \(x\) to zero:
\[20 - 5r = 0\]
Solve for \(r\):
\[r = 4\]
Substitute \(r = 4\) into the general term:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^{10-4} \times \frac{1}{2^4}\]
Simplify:
\[T_5 = \binom{10}{4} \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
Substitute \(\binom{10}{4} = 210\):
\[T_5 = 210 \times \left( \sqrt{a} \right)^6 \times \frac{1}{16}\]
\[T_5 = 210 \times \frac{a^3}{16}\]
The value of \(T_5\) is given as 105:
\[210 \times \frac{a^3}{16} = 105\]
Solve for \(a^3\):
\[a^3 = \frac{105 \times 16}{210}\]
\[a^3 = 8\]
Take the cube root of both sides:
\[a = \sqrt[3]{8}\]
\[a = 2\]
Finally, \(a^2 = 4\).
Answer: \((1) \ 4\)
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.