The area of quadrilateral \(ABCD\) is given by:
\[ \text{Area} = \frac{1}{2} \|\overrightarrow{BD} \times \overrightarrow{AC}\|, \]
where:
\[ \overrightarrow{BD} = \overrightarrow{D} - \overrightarrow{B}, \quad \overrightarrow{AC} = \overrightarrow{C} - \overrightarrow{A}. \]
Calculate \( \overrightarrow{BD} \):
\[ \overrightarrow{BD} = \left(\frac{10}{3} - \frac{5}{3}\right)\hat{i} + \left(\frac{2}{3} - \frac{7}{3}\right)\hat{j} + \left(-\frac{1}{3} - \frac{1}{3}\right)\hat{k}. \]
Simplify:
\[ \overrightarrow{BD} = \frac{5}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{2}{3}\hat{k}. \]
Calculate \( \overrightarrow{AC} \):
\[ \overrightarrow{AC} = (2 - 3)\hat{i} + (2 - 1)\hat{j} + (1 - (-1))\hat{k}. \]
Simplify:
\[ \overrightarrow{AC} = -\hat{i} + \hat{j} + 2\hat{k}. \]
Now, compute \( \overrightarrow{BD} \times \overrightarrow{AC} \):
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{5}{3} & -\frac{5}{3} & -\frac{2}{3} \\ -1 & 1 & 2 \end{vmatrix}. \]
Expand:
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \hat{i}\left((-5/3)(2) - (-5/3)(1)\right) - \hat{j}\left((5/3)(2) - (-2/3)(1)\right) + \hat{k}\left((5/3)(1) - (-5/3)(-1)\right). \]
Simplify:
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \hat{i}\left(-10/3 + 5/3\right) - \hat{j}\left(10/3 - 2/3\right) + \hat{k}\left(5/3 - 5/3\right). \]
\[ \overrightarrow{BD} \times \overrightarrow{AC} = -\frac{5}{3}\hat{i} - \frac{8}{3}\hat{j} + 0\hat{k}. \]
The magnitude is:
\[ \|\overrightarrow{BD} \times \overrightarrow{AC}\| = \sqrt{\left(-\frac{5}{3}\right)^2 + \left(-\frac{8}{3}\right)^2}. \]
\[ \|\overrightarrow{BD} \times \overrightarrow{AC}\| = \sqrt{\frac{25}{9} + \frac{64}{9}} = \sqrt{\frac{89}{9}} = \frac{\sqrt{89}}{3}. \]
The area is:
\[ \text{Area} = \frac{1}{2} \cdot \frac{\sqrt{89}}{3} = \frac{4\sqrt{2}}{3}. \]
The problem asks for the area of the quadrilateral formed by the points \( A(3, 1, -1) \), \( B\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right) \), \( C(2, 2, 1) \), and \( D\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right) \). To solve this, we can calculate the area of the quadrilateral using the vector cross product method. We can treat this quadrilateral as composed of two triangles and sum their areas.
The vectors representing these triangles can be determined from the given points. For simplicity, let's find the area of triangles \( \triangle ABC \) and \( \triangle ACD \) and then sum these areas.
Repeat similar steps to find the area of \( \triangle ACD \):
The total area of quadrilateral \( ABCD \) is the sum of the areas of \( \triangle ABC \) and \( \triangle ACD \):
Therefore, the area of the quadrilateral \( ABCD \) is \( \frac{4\sqrt{2}}{3} \).
Complete the following activity to prove that the sum of squares of diagonals of a rhombus is equal to the sum of the squares of the sides. 
Given: PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T.
To prove: PS\(^2\) + SR\(^2\) + QR\(^2\) + PQ\(^2\) = PR\(^2\) + QS\(^2\)
Activity: Diagonals of a rhombus bisect each other.
In \(\triangle\)PQS, PT is the median and in \(\triangle\)QRS, RT is the median.
\(\therefore\) by Apollonius theorem,
\[\begin{aligned} PQ^2 + PS^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(I)} \\ QR^2 + SR^2 &= \boxed{\phantom{X}} + 2QT^2 \quad \dots \text{(II)} \\ \text{Adding (I) and (II),} \quad PQ^2 + PS^2 + QR^2 + SR^2 &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \\ &= 2(PT^2 + \boxed{\phantom{X}}) + 4QT^2 \quad (\text{RT = PT}) \\ &= 4PT^2 + 4QT^2 \\ &= (\boxed{\phantom{X}})^2 + (2QT)^2 \\ \therefore \quad PQ^2 + PS^2 + QR^2 + SR^2 &= PR^2 + \boxed{\phantom{X}} \\ \end{aligned}\]
Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $ (\vec{AB}-\vec{BC})+(\vec{AD}-\vec{DC})=k \vec{FE} $, then k is equal to


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: