The area of quadrilateral \(ABCD\) is given by:
\[ \text{Area} = \frac{1}{2} \|\overrightarrow{BD} \times \overrightarrow{AC}\|, \]
where:
\[ \overrightarrow{BD} = \overrightarrow{D} - \overrightarrow{B}, \quad \overrightarrow{AC} = \overrightarrow{C} - \overrightarrow{A}. \]
Calculate \( \overrightarrow{BD} \):
\[ \overrightarrow{BD} = \left(\frac{10}{3} - \frac{5}{3}\right)\hat{i} + \left(\frac{2}{3} - \frac{7}{3}\right)\hat{j} + \left(-\frac{1}{3} - \frac{1}{3}\right)\hat{k}. \]
Simplify:
\[ \overrightarrow{BD} = \frac{5}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{2}{3}\hat{k}. \]
Calculate \( \overrightarrow{AC} \):
\[ \overrightarrow{AC} = (2 - 3)\hat{i} + (2 - 1)\hat{j} + (1 - (-1))\hat{k}. \]
Simplify:
\[ \overrightarrow{AC} = -\hat{i} + \hat{j} + 2\hat{k}. \]
Now, compute \( \overrightarrow{BD} \times \overrightarrow{AC} \):
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{5}{3} & -\frac{5}{3} & -\frac{2}{3} \\ -1 & 1 & 2 \end{vmatrix}. \]
Expand:
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \hat{i}\left((-5/3)(2) - (-5/3)(1)\right) - \hat{j}\left((5/3)(2) - (-2/3)(1)\right) + \hat{k}\left((5/3)(1) - (-5/3)(-1)\right). \]
Simplify:
\[ \overrightarrow{BD} \times \overrightarrow{AC} = \hat{i}\left(-10/3 + 5/3\right) - \hat{j}\left(10/3 - 2/3\right) + \hat{k}\left(5/3 - 5/3\right). \]
\[ \overrightarrow{BD} \times \overrightarrow{AC} = -\frac{5}{3}\hat{i} - \frac{8}{3}\hat{j} + 0\hat{k}. \]
The magnitude is:
\[ \|\overrightarrow{BD} \times \overrightarrow{AC}\| = \sqrt{\left(-\frac{5}{3}\right)^2 + \left(-\frac{8}{3}\right)^2}. \]
\[ \|\overrightarrow{BD} \times \overrightarrow{AC}\| = \sqrt{\frac{25}{9} + \frac{64}{9}} = \sqrt{\frac{89}{9}} = \frac{\sqrt{89}}{3}. \]
The area is:
\[ \text{Area} = \frac{1}{2} \cdot \frac{\sqrt{89}}{3} = \frac{4\sqrt{2}}{3}. \]
Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $ (\vec{AB}-\vec{BC})+(\vec{AD}-\vec{DC})=k \vec{FE} $, then k is equal to
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to: