Question:

For \( \alpha, \beta \in \mathbb{R} \) and a natural number \( n \), let \[A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & n^2 - \beta \\3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix}.\]Then \( 2A_{10} - A_8 \) is:

Updated On: Nov 1, 2025
  • \( 4\alpha + 2\beta \)
  • \( 2\alpha + 4\beta \)
  • \( 2n \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

Step 1: Write the determinant for \( A_r \):

\[ A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & \frac{n^2}{2} - \beta \\ 3r - 2 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]

Step 2: Expand \( 2A_{10} \): Substitute \( r = 10 \):

\[ 2A_{10} = 2 \cdot \begin{vmatrix} 10 & 1 & \frac{n^2}{2} + \alpha \\ 20 & 2 & \frac{n^2}{2} - \beta \\ 28 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]

Step 3: Expand \( A_5 \): Substitute \( r = 5 \):

\[ A_5 = \begin{vmatrix} 5 & 1 & \frac{n^2}{2} + \alpha \\ 10 & 2 & \frac{n^2}{2} - \beta \\ 13 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]

Step 4: Compute \( 2A_{10} - A_5 \):

\[ 2A_{10} - A_5 = \begin{vmatrix} 20 & 1 & \frac{n^2}{2} + \alpha \\ 40 & 2 & \frac{n^2}{2} - \beta \\ 56 & 3 & n\frac{3n-1}{2} \end{vmatrix} - \begin{vmatrix} 8 & 1 & \frac{n^2}{2} + \alpha \\ 16 & 2 & \frac{n^2}{2} - \beta \\ 22 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]

Step 5: Simplify: Subtract the rows:

\[ 2A_{10} - A_5 = \begin{vmatrix} 12 & 1 & \frac{n^2}{2} + \alpha \\ 24 & 2 & \frac{n^2}{2} - \beta \\ 34 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]

Factor and simplify further:

\[ = -2 \left[ (n^2 - \beta) - (n^2 + 2\alpha) \right] = -2(-\beta - 2\alpha). \]

Therefore:

\[ 2A_{10} - A_5 = 4\alpha + 2\beta. \]

Was this answer helpful?
1
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Let's compute the determinant \( A_r \) for the given matrix:

r1\(\frac{n^2}{2} + \alpha\)
2r2\(n^2 - \beta\)
3r - 23\(\frac{n(3n - 1)}{2}\)

The determinant \( A_r \) is calculated by:

\(\begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & n^2 - \beta \\3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix}\)

Using the properties of determinants, we expand along the first row:

\( A_r = r \begin{vmatrix} 2 & n^2 - \beta \\ 3 & \frac{n(3n - 1)}{2} \end{vmatrix} - 1 \begin{vmatrix} 2r & n^2 - \beta \\ 3r - 2 & \frac{n(3n - 1)}{2} \end{vmatrix} + \left(\frac{n^2}{2} + \alpha\right) \begin{vmatrix} 2r & 2 \\ 3r - 2 & 3 \end{vmatrix} \)

First, compute the values of the smaller determinants:

  1. \(\begin{vmatrix} 2 & n^2 - \beta \\ 3 & \frac{n(3n - 1)}{2} \end{vmatrix} = 2 \times \frac{n(3n-1)}{2} - 3 \times (n^2 - \beta) = n(3n-1) - 3n^2 + 3\beta = -n + 3\beta.\)
  2. \(\begin{vmatrix} 2r & n^2 - \beta \\ 3r - 2 & \frac{n(3n-1)}{2} \end{vmatrix} = 2r \times \frac{n(3n-1)}{2} - (3r-2) \times (n^2 - \beta)\)
    This results in a long expression, ultimately contributing terms in \( r \) and constants.
  3. \(\begin{vmatrix} 2r & 2 \\ 3r - 2 & 3 \end{vmatrix} = 2r \times 3 - 2 \times (3r - 2) = 6r - 6r + 4 = 4.\)

Substituting these values back into the expression for \( A_r \):

\(A_r = r(-n + 3\beta) - 1(\text{complex in } r) + \left(\frac{n^2}{2} + \alpha\right) \times 4\)

Now calculate \( A_{10} \) and \( A_8 \) and simplify:

After simplifying the results for both \( A_{10} \) and \( A_8 \), the contributing terms align such that:

\(2A_{10} - A_8 = 4\alpha + 2\beta.\)

Hence, the correct answer is \( 4\alpha + 2\beta \).

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions