Step 1: Write the determinant for \( A_r \):
\[ A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & \frac{n^2}{2} - \beta \\ 3r - 2 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 2: Expand \( 2A_{10} \): Substitute \( r = 10 \):
\[ 2A_{10} = 2 \cdot \begin{vmatrix} 10 & 1 & \frac{n^2}{2} + \alpha \\ 20 & 2 & \frac{n^2}{2} - \beta \\ 28 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 3: Expand \( A_5 \): Substitute \( r = 5 \):
\[ A_5 = \begin{vmatrix} 5 & 1 & \frac{n^2}{2} + \alpha \\ 10 & 2 & \frac{n^2}{2} - \beta \\ 13 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 4: Compute \( 2A_{10} - A_5 \):
\[ 2A_{10} - A_5 = \begin{vmatrix} 20 & 1 & \frac{n^2}{2} + \alpha \\ 40 & 2 & \frac{n^2}{2} - \beta \\ 56 & 3 & n\frac{3n-1}{2} \end{vmatrix} - \begin{vmatrix} 8 & 1 & \frac{n^2}{2} + \alpha \\ 16 & 2 & \frac{n^2}{2} - \beta \\ 22 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 5: Simplify: Subtract the rows:
\[ 2A_{10} - A_5 = \begin{vmatrix} 12 & 1 & \frac{n^2}{2} + \alpha \\ 24 & 2 & \frac{n^2}{2} - \beta \\ 34 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Factor and simplify further:
\[ = -2 \left[ (n^2 - \beta) - (n^2 + 2\alpha) \right] = -2(-\beta - 2\alpha). \]
Therefore:
\[ 2A_{10} - A_5 = 4\alpha + 2\beta. \]
Let's compute the determinant \( A_r \) for the given matrix:
| r | 1 | \(\frac{n^2}{2} + \alpha\) |
| 2r | 2 | \(n^2 - \beta\) |
| 3r - 2 | 3 | \(\frac{n(3n - 1)}{2}\) |
The determinant \( A_r \) is calculated by:
\(\begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & n^2 - \beta \\3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix}\)
Using the properties of determinants, we expand along the first row:
\( A_r = r \begin{vmatrix} 2 & n^2 - \beta \\ 3 & \frac{n(3n - 1)}{2} \end{vmatrix} - 1 \begin{vmatrix} 2r & n^2 - \beta \\ 3r - 2 & \frac{n(3n - 1)}{2} \end{vmatrix} + \left(\frac{n^2}{2} + \alpha\right) \begin{vmatrix} 2r & 2 \\ 3r - 2 & 3 \end{vmatrix} \)
First, compute the values of the smaller determinants:
Substituting these values back into the expression for \( A_r \):
\(A_r = r(-n + 3\beta) - 1(\text{complex in } r) + \left(\frac{n^2}{2} + \alpha\right) \times 4\)
Now calculate \( A_{10} \) and \( A_8 \) and simplify:
After simplifying the results for both \( A_{10} \) and \( A_8 \), the contributing terms align such that:
\(2A_{10} - A_8 = 4\alpha + 2\beta.\)
Hence, the correct answer is \( 4\alpha + 2\beta \).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 