Step 1: Write the determinant for \( A_r \):
\[ A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & \frac{n^2}{2} - \beta \\ 3r - 2 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 2: Expand \( 2A_{10} \): Substitute \( r = 10 \):
\[ 2A_{10} = 2 \cdot \begin{vmatrix} 10 & 1 & \frac{n^2}{2} + \alpha \\ 20 & 2 & \frac{n^2}{2} - \beta \\ 28 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 3: Expand \( A_5 \): Substitute \( r = 5 \):
\[ A_5 = \begin{vmatrix} 5 & 1 & \frac{n^2}{2} + \alpha \\ 10 & 2 & \frac{n^2}{2} - \beta \\ 13 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 4: Compute \( 2A_{10} - A_5 \):
\[ 2A_{10} - A_5 = \begin{vmatrix} 20 & 1 & \frac{n^2}{2} + \alpha \\ 40 & 2 & \frac{n^2}{2} - \beta \\ 56 & 3 & n\frac{3n-1}{2} \end{vmatrix} - \begin{vmatrix} 8 & 1 & \frac{n^2}{2} + \alpha \\ 16 & 2 & \frac{n^2}{2} - \beta \\ 22 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Step 5: Simplify: Subtract the rows:
\[ 2A_{10} - A_5 = \begin{vmatrix} 12 & 1 & \frac{n^2}{2} + \alpha \\ 24 & 2 & \frac{n^2}{2} - \beta \\ 34 & 3 & n\frac{3n-1}{2} \end{vmatrix}. \]
Factor and simplify further:
\[ = -2 \left[ (n^2 - \beta) - (n^2 + 2\alpha) \right] = -2(-\beta - 2\alpha). \]
Therefore:
\[ 2A_{10} - A_5 = 4\alpha + 2\beta. \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: