Divide the numerator and denominator by \(\cos x\):
\[ \int_0^{\pi/4} \frac{\tan^2 x \sec^2 x \, dx}{(1 + \tan^3 x)^2}. \]
Let \(1 + \tan^3 x = t\). Then:
\[ \tan^2 x \sec^2 x \, dx = \frac{dt}{3}. \]
The limits transform as:
Substitute into the integral:
\[ \int_0^{\pi/4} \frac{\tan^2 x \sec^2 x \, dx}{(1 + \tan^3 x)^2} = \frac{1}{3} \int_1^2 \frac{dt}{t^2}. \]
Solve the integral:
\[ \frac{1}{3} \int_1^2 t^{-2} \, dt = \frac{1}{3} \left[ -\frac{1}{t} \right]_1^2. \]
Simplify:
\[ \frac{1}{3} \left[ -\frac{1}{2} - (-1) \right] = \frac{1}{3} \left[ -\frac{1}{2} + 1 \right] = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: