Let the r-th term of the geometric progression (GP) be \( ar^{r-1} \).
Step 1. Given condition: Since each term is the arithmetic mean of the next two terms, we have:
\(2a_r = a_{r+1} + a_{r+2}\)
Substituting the terms, this becomes:
\(2ar^{r-1} = ar^r + ar^{r+1}\)
Dividing by \( ar^{r-1} \) (assuming \( a \neq 0 \)), we get:
\(2 = r + r^2\)
Step 2. Solve for \( r \): Rearranging, we have:
[\(r^2 + r - 2 = 0\)
Factoring, we get:
\((r - 1)(r + 2) = 0\)
Thus, \( r = 1 \) or \( r = -2 \). Since \( a_2 \neq a_1 \), \( r \neq 1 \), so \( r = -2 \).
Step 3. Calculate \( S_{20} - S_{18} \): Since the sum of the first \( n \) terms of a GP is given by
\(S_n = \frac{a(r^n - 1)}{r - 1},\)
we find \( S_{20} \) and \( S_{18} \):
\(S_{20} = \frac{1}{-2}((-2)^{20} - 1), \quad S_{18} = \frac{1}{-2}((-2)^{18} - 1).\)
Therefore,
\(S_{20} - S_{18} = \frac{1}{-2}((-2)^{20} - (-2)^{18})\)
Simplifying, we get:
\(S_{20} - S_{18} = -2^{15}.\)
The Correct Answer is:\( -2^{15} \).