Let \( X = {R} \times {R} \). Define a relation \( R \) on \( X \) as:
\[
(a_1, b_1) \, R \, (a_2, b_2) \iff b_1 = b_2.
\]
Statement-I: \( R \) is an equivalence relation.
Statement-II: For some \( (a, b) \in X \), the set \( S = \{(x, y) \in X : (x, y) R (a, b)\ \) represents a line parallel to \( y = x \).}