If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
To determine the value of \( k_1^2 + k_2^2 \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit, right-hand limit, and the value of the function at \( x = 0 \) are equal. Let's calculate these values step-by-step.
For \( x < 0 \), the function is defined as:
\(f(x) = \frac{2}{x} \left( \sin((k_1 + 1)x) + \sin((k_2 -1)x) \right)\)
For the function to be continuous as \( x \to 0^- \), we use the limit property: \( \lim_{x \to 0} \sin(ax)/x = a \).
Let's apply this property:
\(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(\frac{2}{x} \sin((k_1 + 1)x) + \frac{2}{x} \sin((k_2 - 1)x)\right)\)
\(= 2(k_1 + 1) + 2(k_2 - 1)\)
\(= 2k_1 + 2k_2 + 2 - 2 = 2k_1 + 2k_2\)
For \( x > 0 \), the function is defined as:
\(f(x) = \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right)\)
We calculate:
Using the series expansion for logarithmic function: \(\log(1+x) \approx x\) for small \( x\).
\(\lim_{x \to 0^+} \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) = \lim_{x \to 0^+} \frac{2}{x} \log_e \left( 1 + \frac{(k_1 - k_2)x}{2 + k_2 x} \right)\)
As \( x \to 0 \), \( \frac{(k_1 - k_2)x}{2 + k_2 x} \to (k_1 - k_2)x/2 \).
\(\lim_{x \to 0^+} \frac{2}{x} \cdot \frac{(k_1 - k_2)x}{2} = (k_1 - k_2)\)
The given function value at \( x = 0 \) is 4.
For continuity at \( x = 0 \), the left-hand limit and right-hand limit must equal the value of the function at \( x = 0 \).
Thus, we have:
From the equations:
\(k_1^2 + k_2^2 = 3^2 + (-1)^2 = 9 + 1 = 10\)
Therefore, the final answer is \( 10 \).
To ensure that the function \( f(x) \) is continuous at \( x = 0 \), the left-hand limit as \( x \to 0^- \), the right-hand limit as \( x \to 0^+ \), and the value at \( x = 0 \) must all be equal to 4.
Step 1: Calculate the left-hand limit
As \( x \to 0^- \), \( f(x) = \frac{2}{x}(\sin((k_1 + 1)x) + \sin((k_2 - 1)x)) \).
Using the small angle approximation \(\sin(ax) \approx ax\) when \(x\) is near zero:
\( \frac{2}{x}((k_1 + 1)x + (k_2 - 1)x) = 2((k_1 + 1) + (k_2 - 1)) = 2(k_1 + k_2) \).
To be continuous at \( x = 0 \),
\( \lim_{x \to 0^-} f(x) = 4 \) implies \( 2(k_1 + k_2) = 4 \) thus \( k_1 + k_2 = 2 \).
Step 2: Calculate the right-hand limit
As \( x \to 0^+ \), \( f(x) = \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) \).
Using the first-order expansion \(\log(1 + u) \approx u\) when \(x\) is near zero:
\(\log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) \approx \log_e \left(1 + \frac{(k_1 - k_2)x}{2} \right) \approx \frac{(k_1-k_2)x}{2}\)
So, \( \frac{2}{x} \cdot \frac{(k_1-k_2)x}{2} = (k_1 - k_2) \).
To be continuous at \( x = 0 \),
\( \lim_{x \to 0^+} f(x) = 4 \) implies \( k_1 - k_2 = 4 \).
Step 3: Solve for \( k_1 \) and \( k_2 \)
We have the equations:
\( k_1 + k_2 = 2 \) (Equation 1)
\( k_1 - k_2 = 4 \) (Equation 2)
Adding these equations:
\( 2k_1 = 6 \) so \( k_1 = 3 \).
Substituting back into Equation 1:
\( 3 + k_2 = 2 \) thus \( k_2 = -1 \).
Step 4: Calculate \( k_1^2 + k_2^2 \)
Using the obtained values:
\( k_1^2 + k_2^2 = 3^2 + (-1)^2 = 9 + 1 = 10 \).
Thus, \( k_1^2 + k_2^2 \) is equal to \( \boxed{10} \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 