If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
To determine the value of \( k_1^2 + k_2^2 \) such that the function \( f(x) \) is continuous at \( x = 0 \), we need to ensure that the left-hand limit, right-hand limit, and the value of the function at \( x = 0 \) are equal. Let's calculate these values step-by-step.
For \( x < 0 \), the function is defined as:
\(f(x) = \frac{2}{x} \left( \sin((k_1 + 1)x) + \sin((k_2 -1)x) \right)\)
For the function to be continuous as \( x \to 0^- \), we use the limit property: \( \lim_{x \to 0} \sin(ax)/x = a \).
Let's apply this property:
\(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(\frac{2}{x} \sin((k_1 + 1)x) + \frac{2}{x} \sin((k_2 - 1)x)\right)\)
\(= 2(k_1 + 1) + 2(k_2 - 1)\)
\(= 2k_1 + 2k_2 + 2 - 2 = 2k_1 + 2k_2\)
For \( x > 0 \), the function is defined as:
\(f(x) = \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right)\)
We calculate:
Using the series expansion for logarithmic function: \(\log(1+x) \approx x\) for small \( x\).
\(\lim_{x \to 0^+} \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) = \lim_{x \to 0^+} \frac{2}{x} \log_e \left( 1 + \frac{(k_1 - k_2)x}{2 + k_2 x} \right)\)
As \( x \to 0 \), \( \frac{(k_1 - k_2)x}{2 + k_2 x} \to (k_1 - k_2)x/2 \).
\(\lim_{x \to 0^+} \frac{2}{x} \cdot \frac{(k_1 - k_2)x}{2} = (k_1 - k_2)\)
The given function value at \( x = 0 \) is 4.
For continuity at \( x = 0 \), the left-hand limit and right-hand limit must equal the value of the function at \( x = 0 \).
Thus, we have:
From the equations:
\(k_1^2 + k_2^2 = 3^2 + (-1)^2 = 9 + 1 = 10\)
Therefore, the final answer is \( 10 \).
To ensure that the function \( f(x) \) is continuous at \( x = 0 \), the left-hand limit as \( x \to 0^- \), the right-hand limit as \( x \to 0^+ \), and the value at \( x = 0 \) must all be equal to 4.
Step 1: Calculate the left-hand limit
As \( x \to 0^- \), \( f(x) = \frac{2}{x}(\sin((k_1 + 1)x) + \sin((k_2 - 1)x)) \).
Using the small angle approximation \(\sin(ax) \approx ax\) when \(x\) is near zero:
\( \frac{2}{x}((k_1 + 1)x + (k_2 - 1)x) = 2((k_1 + 1) + (k_2 - 1)) = 2(k_1 + k_2) \).
To be continuous at \( x = 0 \),
\( \lim_{x \to 0^-} f(x) = 4 \) implies \( 2(k_1 + k_2) = 4 \) thus \( k_1 + k_2 = 2 \).
Step 2: Calculate the right-hand limit
As \( x \to 0^+ \), \( f(x) = \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) \).
Using the first-order expansion \(\log(1 + u) \approx u\) when \(x\) is near zero:
\(\log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right) \approx \log_e \left(1 + \frac{(k_1 - k_2)x}{2} \right) \approx \frac{(k_1-k_2)x}{2}\)
So, \( \frac{2}{x} \cdot \frac{(k_1-k_2)x}{2} = (k_1 - k_2) \).
To be continuous at \( x = 0 \),
\( \lim_{x \to 0^+} f(x) = 4 \) implies \( k_1 - k_2 = 4 \).
Step 3: Solve for \( k_1 \) and \( k_2 \)
We have the equations:
\( k_1 + k_2 = 2 \) (Equation 1)
\( k_1 - k_2 = 4 \) (Equation 2)
Adding these equations:
\( 2k_1 = 6 \) so \( k_1 = 3 \).
Substituting back into Equation 1:
\( 3 + k_2 = 2 \) thus \( k_2 = -1 \).
Step 4: Calculate \( k_1^2 + k_2^2 \)
Using the obtained values:
\( k_1^2 + k_2^2 = 3^2 + (-1)^2 = 9 + 1 = 10 \).
Thus, \( k_1^2 + k_2^2 \) is equal to \( \boxed{10} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]