The given equation is: \[ y^2 \frac{dx}{dy} + \left( x - \frac{1}{y} \right) = 0 \] This is a first-order linear differential equation. We can use the integrating factor \( I.F. = e^{\int \frac{1}{y^2} dy} = e^{\frac{1}{y}} \). Thus, we have: \[ x \cdot e^{\frac{1}{y}} = \int e^{\frac{1}{t}} t^{-3} dt + C \] Put $-\frac{1}{y} = t$ $+\frac{1}{y^2} dy = dt$ $x \cdot e^{\frac{1}{y}} = -\int t \cdot e^t dt$ $x \cdot e^{\frac{1}{y}} = -te^t + e^t + C$ $x \cdot e^{\frac{1}{y}} = \frac{+1}{y} e^{\frac{1}{y}} + e^{\frac{1}{y}} + C$ $x = 1, y = 1$ $\frac{1}{e} = \frac{1}{e} + \frac{1}{e} + C$
$\Rightarrow C = -\frac{1}{e}$ Put $y = \frac{1}{2}$ $\frac{x}{e^2} = \frac{2}{e^2} + \frac{1}{e^2} - \frac{1}{e}$ $x = 3 - e$
after Solving for \( C \) and applying the initial condition, we find: \[ x = 3 - e \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :