To solve the problem, we need to find the value of \( c + 2d \) where \( (c, d) \) is the centroid of triangle \( PQR \) with given points \( P(5, 4) \), \( Q(-2, 4) \), and \( R(a, b) \), and orthocenter \( O(2, \frac{14}{5}) \).
1. Calculating the Area of Triangle \( PQR \):
The area of triangle \( PQR \) is given by:
\[ \text{Area} = \frac{1}{2} |5(4-b) - 2(b-4) + a(4-4)| = \frac{1}{2} |20 - 5b - 2b + 8| = \frac{1}{2} |28 - 7b| = \frac{7}{2}|4-b| \]
Given that the area is 35, we have:
\[ \frac{7}{2}|4-b| = 35 \implies |4-b| = 10 \]
This gives two cases:
\[ 4 - b = 10 \implies b = -6 \quad \text{or} \quad 4 - b = -10 \implies b = 14 \]
2. Finding the Centroid \( C(c, d) \):
The centroid coordinates are:
\[ c = \frac{5 + (-2) + a}{3} = \frac{3 + a}{3} \quad \text{and} \quad d = \frac{4 + 4 + b}{3} = \frac{8 + b}{3} \]
3. Case 1: \( b = -6 \):
Here, \( R(a, -6) \), and \( d = \frac{8 - 6}{3} = \frac{2}{3} \).
Since \( PQ \) is horizontal (slope \( 0 \)), the altitude from \( R \) is vertical, so its equation is \( x = a \).
Given the orthocenter \( O(2, \frac{14}{5}) \), we have \( a = 2 \).
Thus, \( c = \frac{3 + 2}{3} = \frac{5}{3} \).
Now, \( c + 2d = \frac{5}{3} + 2 \left( \frac{2}{3} \right) = \frac{5 + 4}{3} = \frac{9}{3} = 3 \).
4. Case 2: \( b = 14 \):
Here, \( R(a, 14) \), and \( d = \frac{8 + 14}{3} = \frac{22}{3} \).
Again, the altitude from \( R \) is vertical, so \( a = 2 \).
Thus, \( c = \frac{5}{3} \), and \( c + 2d = \frac{5}{3} + 2 \left( \frac{22}{3} \right) = \frac{49}{3} \).
However, verifying the orthocenter condition leads to a contradiction, so this case is invalid.
5. Conclusion:
Only \( b = -6 \) is valid, giving \( R(2, -6) \), \( d = \frac{2}{3} \), and \( c = \frac{5}{3} \).
Thus, \( c + 2d = 3 \).
Final Answer:
The final answer is \(\boxed{3}\).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).