>
JEE Main
>
Mathematics
List of top Mathematics Questions asked in JEE Main
Let $(h,k)$ lie on the circle $C:x^2+y^2=4$ and the point $(2h+1,\,3k+2)$ lie on an ellipse with eccentricity $e$. Then the value of $\dfrac{5}{e^2}$ is equal to
JEE Main - 2026
JEE Main
Mathematics
Conic sections
Let $A = \{2, 3, 5, 7, 9\}$. Let $R$ be the relation on $A$ defined by $xRy$ if and only if $2x \le 3y$. Let $l$ be the number of elements in $R$, and $m$ be the minimum number of elements required to be added in $R$ to make it a symmetric relation. Then $l + m$ is equal to :
JEE Main - 2026
JEE Main
Mathematics
Functions
The coefficient of \(x^{48}\) in \[ 1(1+x) + 2(1+x)^2 + 3(1+x)^3 + \cdots + 100(1+x)^{100} \] is
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
In the binomial expansion of
\( (ax^2 + bx + c)(1 - 2x)^{26} \),
the coefficients of \( x, x^2 \), and \( x^3 \) are -56, 0, and 0 respectively. Then, the value of \( (a + b + c) \) is
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
The value of
\[ \frac{{}^{100}C_{50}}{51} + \frac{{}^{100}C_{51}}{52} + \cdots + \frac{{}^{100}C_{100}}{101} \]
is:
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
If in the expansion of \( (1 + x^2)^2(1 + x)^n \), the coefficients of \( x \), \( x^2 \), and \( x^3 \) are in arithmetic progression, then the sum of all possible values of \( n \) (where \( n \geq 3 \)) is:
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
The coefficient of x\(^{48}\) in \(1(1+x)+2(1+x)^2+3(1+x)^3 +.....+100(1+x)^{100}\) is:
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
The coefficient of \( x^{48} \) in the expansion of \[ 1 + (1+x) + 2(1+x)^2 + 3(1+x)^3 + \dots + 100(1+x)^{100} \] is
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
The value of \[ \binom{100}{50} + \binom{100}{51} + \binom{100}{52} + \dots + \binom{100}{100} \] is:
JEE Main - 2026
JEE Main
Mathematics
Binomial theorem
If $2(\vec a \times \vec c)+3(\vec b \times \vec c)=0$, where $\vec a=2\hat i-5\hat j+5\hat k$, $\vec b=\hat i-\hat j+3\hat k$ and $(\vec a-\vec b)\cdot\vec c=-97$, find $|\vec c \times \vec k|^2$.
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
If $2(\vec a \times \vec c)+3(\vec b \times \vec c)=0$, where $\vec a=2\hat i-5\hat j+5\hat k$, $\vec b=\hat i-\hat j+3\hat k$ and $(\vec a-\vec b)\cdot\vec c=-97$, find $|\vec c \times \vec k|^2$.
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
For given vectors \( \vec{a} = -\hat{i} + \hat{j} + 2\hat{k} \) and \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \) where \( \vec{c} = \vec{a} \times \vec{b} \) and \( \vec{d} = \vec{c} \times \vec{b} \). Then the value of \( (\vec{a}-\vec{b}) \cdot \vec{d} \) is:
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
If \( \vec{a}, \vec{b}, \vec{c} \) are three vectors such that
\[ \vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c}), \]
\( |\vec{a}| = 1,\; |\vec{b}| = 4,\; |\vec{c}| = 2 \) and the angle between \( \vec{b} \) and \( \vec{c} \) is \( 60^\circ \), then find \( |\vec{a} \cdot \vec{c}| \):
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
Let \(\overrightarrow{AB}=3\hat{i}+\hat{j}-\hat{k}\) and \(\overrightarrow{AC}=\hat{i}-\hat{j}+3\hat{k}\). If \(P\) is the point on the bisector of angle between \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\) such that \(|\overrightarrow{AP}|=\dfrac{\sqrt{5}}{2}\), then the area of \(\triangle APB\) is:
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
If three vectors are given as shown. If the angle between vectors \( \mathbf{p} \) and \( \mathbf{q} \) is \( \theta \) where \( \cos \theta = \frac{1}{\sqrt{3}} \), \( |\mathbf{p}| = 2 \), and \( |\mathbf{q}| = 2 \), then the value of \( |\mathbf{p} \times (\mathbf{q} - 3\mathbf{r})|^2 - 3|\mathbf{r}|^2 \) is:
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
Given that
\[ \vec a=2\hat i+\hat j-\hat k,\quad \vec b=\hat i+\hat j,\quad \vec c=\vec a\times\vec b, \] \[ |\vec d\times\vec c|=3,\quad \vec d\cdot\vec c=\frac{\pi}{4},\quad |\vec a-\vec d|=\sqrt{11}, \]
find $\vec a\cdot\vec d$.
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
If three vectors are given as shown. If the angle between vectors \( \vec{p} \) and \( \vec{q} \) is \( \theta \), where \[ \cos \theta = \frac{1}{\sqrt{3}}, \quad |\vec{p}| = 2\sqrt{3}, \quad |\vec{q}| = 2, \] then find the value of \[ \left| \vec{p} \times (\vec{q} - 3\vec{r}) \right|^{2} - 3|\vec{r}|^{2}. \]
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
Let the lines
\[ L_1:\ \vec r=(\hat i+2\hat j+3\hat k)+\lambda(2\hat i+3\hat j+4\hat k),\ \lambda\in\mathbb R \] \[ L_2:\ \vec r=(4\hat i+\hat j)+\mu(5\hat i+2\hat j+\hat k),\ \mu\in\mathbb R \]
intersect at the point $R$. Let $P$ and $Q$ be the points lying on the lines $L_1$ and $L_2$ respectively, such that
\[ |PR|=\sqrt{29}\quad \text{and}\quad |PQ|=\sqrt{\frac{47}{3}}. \]
If the point $P$ lies in the first octant, then find $27(QR)^2$.
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
For given vectors \( \mathbf{a} = -\hat{i} + \hat{j} + 2\hat{k} \) and \( \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \), where \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \) and \( \mathbf{d} = \mathbf{c} \times \mathbf{b} \), then the value of \( (\mathbf{a} - \mathbf{b}) \cdot \mathbf{d} \) is:
JEE Main - 2026
JEE Main
Mathematics
Vector Algebra
If \( A = \{ 1, 2, 3, 4, 5, 6 \}, B = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \} \), then the number of strictly increasing functions from \( A \to B \) such that \( f(i) \neq i \) for \( i = 1, 2, 3, 4, 5, 6 \) is
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
\[ \left(\frac{1}{^{15}C_0}+\frac{1}{^{15}C_1}\right) \left(\frac{1}{^{15}C_1}+\frac{1}{^{15}C_2}\right) \cdots \left(\frac{1}{^{15}C_{12}}+\frac{1}{^{15}C_{13}}\right) = \frac{\alpha^{13}}{^{14}C_0\cdot {}^{14}C_1\cdot {}^{14}C_2\cdots {}^{14}C_{12}} \] If so, then find the value of \(30\alpha\).
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
Let \( S \) be the number of 4-digit numbers \( abcd \), where
\[ a>b>c>d \]
and let \( P \) be the number of 5-digit numbers \( abcde \), where the product of digits is 20. Find \( S + P \):
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
Number of 4 letter words with or without meaning formed from the letters of the word PQRSTTUVV is:
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
Number of ways of distributing 16 identical oranges among 4 persons such that each one gets at least one orange is:
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
If all the letters of the word 'UDAYPUR' are arranged in all possible permutations and these permutations are listed in dictionary order, then the rank of the word 'UDAYPUR' is
JEE Main - 2026
JEE Main
Mathematics
permutations and combinations
Prev
1
...
6
7
8
9
10
...
178
Next