Let the center of the circle be \( (a, 0) \) and its radius be \( r \). The equation of the tangent line is: \[ x - y + 1 = 0. \] Since the circle touches this line, \[ \text{Perpendicular distance from center to line} = r. \] \[ \frac{|a - 0 + 1|}{\sqrt{1^2 + (-1)^2}} = r \Rightarrow r = \frac{a + 1}{\sqrt{2}}. \]
The line \( -3x + 2y = 1 \) can be written as: \[ 3x - 2y + 1 = 0. \] Distance of center \( (a, 0) \) from this line: \[ d = \frac{|3a + 1|}{\sqrt{3^2 + (-2)^2}} = \frac{|3a + 1|}{\sqrt{13}}. \] The chord length formula: \[ \text{Chord length} = 2\sqrt{r^2 - d^2} = \frac{4}{\sqrt{13}}. \]
Substitute \( r = \frac{a + 1}{\sqrt{2}} \):
\[ 2\sqrt{\frac{(a + 1)^2}{2} - \frac{(3a + 1)^2}{13}} = \frac{4}{\sqrt{13}}. \] Square both sides: \[ 4\left(\frac{(a + 1)^2}{2} - \frac{(3a + 1)^2}{13}\right) = \frac{16}{13}. \] Simplify: \[ 2(a + 1)^2 - \frac{4(3a + 1)^2}{13} = \frac{16}{13}. \] Multiply through by 13: \[ 26(a + 1)^2 - 4(3a + 1)^2 = 16. \] Expand: \[ 26(a^2 + 2a + 1) - 4(9a^2 + 6a + 1) = 16. \] \[ 26a^2 + 52a + 26 - 36a^2 - 24a - 4 = 16. \] Simplify: \[ -10a^2 + 28a + 6 = 0. \] \[ 5a^2 - 14a - 3 = 0. \] Solve for \( a \): \[ a = \frac{14 \pm \sqrt{196 + 60}}{10} = \frac{14 \pm 16}{10}. \] Hence: \[ a = 3 \, \text{or} \, a = -0.2. \] Since the center lies on the positive x-axis, \( a = 3 \).
\[ r = \frac{a + 1}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \]
Equation of hyperbola: \[ \frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1. \] Length of transverse axis = \( 2\alpha = \) diameter of circle = \( 2r = 4\sqrt{2} \). Thus: \[ \alpha = 2\sqrt{2} \Rightarrow \alpha^2 = 8. \]
One focus of the hyperbola = center of circle. Distance of focus = \( ae = a\sqrt{1 + \frac{\beta^2}{\alpha^2}} = 3 \). Since \( a = \alpha \): \[ \alpha\sqrt{1 + \frac{\beta^2}{\alpha^2}} = 3. \] \[ \sqrt{\alpha^2 + \beta^2} = 3. \] Square: \[ \alpha^2 + \beta^2 = 9. \] Substitute \( \alpha^2 = 8 \): \[ \beta^2 = 1. \]
\[ 2\alpha^2 + 3\beta^2 = 2(8) + 3(1) = 16 + 3 = 19. \]
\[ \boxed{2\alpha^2 + 3\beta^2 = 19} \]

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.