\(\left| \frac{z-i}{2z+i} \right| = \frac{1}{3}\)
\(\left| \frac{z-i}{z+1} \right| = \frac{2}{3}\)
3\(|x - iy - i| = 2 |x - iy + \frac{i}{2}|\)
\(9(x^{2} + (y+1)^{2}) = 4(x^{2} + (y - \frac{1}{3})^{2})\)
\(9x^{2} + 9y^{2} + 18y + 9 = 4x^{2} + 4y^{2} - 4y + 1\)
\(5x^{2} + 5y^{2} + 22y + 8 = 0\)
\(x^{2} + y^{2} + \frac{22y}{5} + \frac{8}{5} = 0\)
centre \((0, -\frac{11}{5})\)
\[ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \left| \frac{10}{5} \right| = 11 \]
\(\alpha = 1\)
\(\Rightarrow \left( \frac{-11}{5} \alpha \right)^{2} = (11 \times 2)^{2}\)
\(\Rightarrow \alpha^{2} = 100\)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).