\(\left| \frac{z-i}{2z+i} \right| = \frac{1}{3}\)
\(\left| \frac{z-i}{z+1} \right| = \frac{2}{3}\)
3\(|x - iy - i| = 2 |x - iy + \frac{i}{2}|\)
\(9(x^{2} + (y+1)^{2}) = 4(x^{2} + (y - \frac{1}{3})^{2})\)
\(9x^{2} + 9y^{2} + 18y + 9 = 4x^{2} + 4y^{2} - 4y + 1\)
\(5x^{2} + 5y^{2} + 22y + 8 = 0\)
\(x^{2} + y^{2} + \frac{22y}{5} + \frac{8}{5} = 0\)
centre \((0, -\frac{11}{5})\)
\[ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \left| \frac{10}{5} \right| = 11 \]
\(\alpha = 1\)
\(\Rightarrow \left( \frac{-11}{5} \alpha \right)^{2} = (11 \times 2)^{2}\)
\(\Rightarrow \alpha^{2} = 100\)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).