Question:

Let the position vectors of the vertices A, B, and C of a tetrahedron ABCD be \( \hat{i} + 2\hat{j} + \hat{k} \), \( \hat{i} + 3\hat{j} - 2\hat{k} \), and \( 2\hat{i} + \hat{j} - \hat{k} \) respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is \( \frac{\sqrt{10}}{3} \) and the volume of the tetrahedron is \( \frac{\sqrt{805}}{6\sqrt{2}} \), then the position vector of E is:

Show Hint

To solve for position vectors in 3D geometry problems, use the properties of medians, altitudes, and perpendicularity in combination with vector operations such as dot products and cross products.
Updated On: Mar 17, 2025
  • \( \frac{1}{2} (\hat{i} + 4\hat{j} + 7\hat{k}) \)
  • \( \frac{1}{12} (7\hat{i} + 4\hat{j} + 3\hat{k}) \)
  • \( \frac{1}{6} (12\hat{i} + 12\hat{j} + \hat{k}) \)
  • \( \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k}) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given: - \( A(1, 2, 1) \), - \( B(1, 3, -2) \), - \( C(2, 1, -1) \), - The point \( E \) lies on the median of triangle \( ABC \), and the altitude from \( D \) intersects this line at point \( E \). 

Step 1: Calculate the area of triangle ABC. The area of \( \triangle ABC \) is given by: \[ \text{Area of } \triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|. \] Using the position vectors of \( A \), \( B \), and \( C \), we calculate: \[ \overrightarrow{AB} = \langle 0, 1, -3 \rangle, \quad \overrightarrow{AC} = \langle 1, -1, -2 \rangle. \] The cross product \( \overrightarrow{AB} \times \overrightarrow{AC} \) is: \[ \overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} 
0 & 1 & -3 
1 & -1 & -2 \end{array} \right| = \hat{i} \left( 1 \times (-2) - (-1 \times -3) \right) - \hat{j} \left( 0 \times (-2) - (1 \times -3) \right) + \hat{k} \left( 0 \times (-1) - (1 \times 1) \right) = \langle -1, 3, -1 \rangle. \] So the area is: \[ \text{Area of } \triangle ABC = \frac{1}{2} \times \sqrt{(-1)^2 + 3^2 + (-1)^2} = \frac{1}{2} \times \sqrt{11} = \frac{\sqrt{35}}{2}. \] 

Step 2: Using the volume formula. The volume \( V \) of the tetrahedron is given by: \[ V = \frac{1}{3} \times \text{Base Area} \times h. \] We are given the volume as \( \frac{\sqrt{805}}{6\sqrt{2}} \), and we already know the base area, so we solve for \( h \): \[ \frac{1}{3} \times \frac{\sqrt{35}}{2} \times h = \frac{\sqrt{805}}{6\sqrt{2}} \quad \Rightarrow \quad h = \frac{\sqrt{23}}{2}. \] 

Step 3: Calculating \( AE \). Since \( AE^2 = AD^2 - DE^2 \), we can calculate \( AE \) as: \[ AE^2 = \frac{13}{18}, \quad AE = \frac{\sqrt{13}}{18}. \] 

Step 4: Finding the position vector of E. Finally, we compute the position vector of point \( E \) as: \[ AE = \left| \mathbf{A} - \frac{5}{6} \right| \quad \Rightarrow \quad \frac{1}{6} (\hat{i} + 4\hat{j} + 7\hat{k}). \]

Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions