To find the position vector of point \( E \), we need to understand the spatial configuration of the tetrahedron and apply relevant vector geometry concepts. Let's solve the problem step-by-step.
\( \mathbf{E} = \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k}) \)
Hence, the position vector of point \( E \) is \( \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k}) \).
To solve this problem, we first need the centroid \( G \) of triangle \( ABC \), which acts as the intersection of the medians and divides them in a 2:1 ratio. Given the positions:
A is \( \vec{A} = \hat{i} + 2\hat{j} + \hat{k} \),
B is \( \vec{B} = \hat{i} + 3\hat{j} - 2\hat{k} \),
C is \( \vec{C} = 2\hat{i} + \hat{j} - \hat{k} \).
We calculate the centroid:
\[\vec{G} = \frac{1}{3}(\vec{A} + \vec{B} + \vec{C}) = \frac{1}{3}((\hat{i} + 2\hat{j} + \hat{k}) + (\hat{i} + 3\hat{j} - 2\hat{k}) + (2\hat{i} + \hat{j} - \hat{k}))\]
\[= \frac{1}{3}(4\hat{i} + 6\hat{j} - 2\hat{k}) = \frac{4}{3}\hat{i} + 2\hat{j} - \frac{2}{3}\hat{k}\]
Next, let's introduce the point \( D \), where the length \( \text{AD} = \frac{\sqrt{10}}{3} \). The volume \( V \) of the tetrahedron is \( \frac{\sqrt{805}}{6\sqrt{2}} \). The formula for the volume of a tetrahedron is: \[V = \frac{1}{3}\times \text{Area of base}\times \text{Height}\]
For the tetrahedron:
Area of base \( ABC \) = \(|\vec{AB}\times \vec{AC}|\),
Let \(\vec{AB} = \vec{B} - \vec{A} = (0\hat{i} + \hat{j} - 3\hat{k})\)
\(\vec{AC} = \vec{C} - \vec{A} = (\hat{i} - \hat{j} - 2\hat{k})\)
Use the cross-product:
\(\vec{AB} \times \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\0 & 1 & -3 \\1 & -1 & -2\end{vmatrix}\) = \((\hat{i}(3+2)-\hat{j}(0-3)+\hat{k}(0-1))\)
\[= 5\hat{i} + 3\hat{j} - \hat{k}\],
Magnitude = \(\sqrt{5^2 + 3^2 + 1^2} = \sqrt{35}\)
Area = \(\frac{1}{2}\times \sqrt{35}\).
Volume equation: \[\frac{1}{3} \times \frac{\sqrt{35}}{2} \times \text{Height} = \frac{\sqrt{805}}{6\sqrt{2}}\],
Solve for Height: \[\frac{\text{Height}}{3} = \frac{\sqrt{805} \times 2}{\sqrt{35} \times 2\sqrt{2}},\] \[\text{Height}= \sqrt{10}/3\],
which confirms the altitude aligns with \( \text{AD} \).
Since \( E \) is on the median, it divides it by a 2:1 ratio:
\[\text{Position vector of } E = \frac{1}{3}(2\vec{G} + \vec{A}) = \frac{1}{3}(2(\frac{4}{3}\hat{i} + 2\hat{j} - \frac{2}{3}\hat{k}) + (\hat{i} + 2\hat{j} + \hat{k}))\]
\(= \frac{1}{3}(\frac{8}{3}\hat{i} + 4\hat{j} - \frac{4}{3}\hat{k} + \hat{i} + 2\hat{j} + \hat{k})\)
\(= \frac{1}{3}(\frac{11}{3}\hat{i} + 6\hat{j} + \frac{2}{3}\hat{k})\)
\(= \frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k})\)
Therefore, the correct choice is: \( \frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k}) \).
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
