Question:

Let the position vectors of the vertices A, B, and C of a tetrahedron ABCD be \( \hat{i} + 2\hat{j} + \hat{k} \), \( \hat{i} + 3\hat{j} - 2\hat{k} \), and \( 2\hat{i} + \hat{j} - \hat{k} \) respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is \( \frac{\sqrt{10}}{3} \) and the volume of the tetrahedron is \( \frac{\sqrt{805}}{6\sqrt{2}} \), then the position vector of E is:

Show Hint

To solve for position vectors in 3D geometry problems, use the properties of medians, altitudes, and perpendicularity in combination with vector operations such as dot products and cross products.
Updated On: Apr 29, 2025
  • \( \frac{1}{2} (\hat{i} + 4\hat{j} + 7\hat{k}) \)
  • \( \frac{1}{12} (7\hat{i} + 4\hat{j} + 3\hat{k}) \)
  • \( \frac{1}{6} (12\hat{i} + 12\hat{j} + \hat{k}) \)
  • \( \frac{1}{6} (7\hat{i} + 12\hat{j} + \hat{k}) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve this problem, we first need the centroid \( G \) of triangle \( ABC \), which acts as the intersection of the medians and divides them in a 2:1 ratio. Given the positions: 
A is \( \vec{A} = \hat{i} + 2\hat{j} + \hat{k} \),
B is \( \vec{B} = \hat{i} + 3\hat{j} - 2\hat{k} \),
C is \( \vec{C} = 2\hat{i} + \hat{j} - \hat{k} \).
We calculate the centroid
\[\vec{G} = \frac{1}{3}(\vec{A} + \vec{B} + \vec{C}) = \frac{1}{3}((\hat{i} + 2\hat{j} + \hat{k}) + (\hat{i} + 3\hat{j} - 2\hat{k}) + (2\hat{i} + \hat{j} - \hat{k}))\]
\[= \frac{1}{3}(4\hat{i} + 6\hat{j} - 2\hat{k}) = \frac{4}{3}\hat{i} + 2\hat{j} - \frac{2}{3}\hat{k}\]
Next, let's introduce the point \( D \), where the length \( \text{AD} = \frac{\sqrt{10}}{3} \). The volume \( V \) of the tetrahedron is \( \frac{\sqrt{805}}{6\sqrt{2}} \). The formula for the volume of a tetrahedron is: \[V = \frac{1}{3}\times \text{Area of base}\times \text{Height}\]
For the tetrahedron: 
Area of base \( ABC \) = \(|\vec{AB}\times \vec{AC}|\),
Let \(\vec{AB} = \vec{B} - \vec{A} = (0\hat{i} + \hat{j} - 3\hat{k})\)
\(\vec{AC} = \vec{C} - \vec{A} = (\hat{i} - \hat{j} - 2\hat{k})\)
Use the cross-product: 
\(\vec{AB} \times \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\0 & 1 & -3 \\1 & -1 & -2\end{vmatrix}\) = \((\hat{i}(3+2)-\hat{j}(0-3)+\hat{k}(0-1))\)
\[= 5\hat{i} + 3\hat{j} - \hat{k}\],
Magnitude = \(\sqrt{5^2 + 3^2 + 1^2} = \sqrt{35}\)
Area = \(\frac{1}{2}\times \sqrt{35}\).
Volume equation: \[\frac{1}{3} \times \frac{\sqrt{35}}{2} \times \text{Height} = \frac{\sqrt{805}}{6\sqrt{2}}\],
Solve for Height: \[\frac{\text{Height}}{3} = \frac{\sqrt{805} \times 2}{\sqrt{35} \times 2\sqrt{2}},\] \[\text{Height}= \sqrt{10}/3\],
which confirms the altitude aligns with \( \text{AD} \).
Since \( E \) is on the median, it divides it by a 2:1 ratio:
\[\text{Position vector of } E = \frac{1}{3}(2\vec{G} + \vec{A}) = \frac{1}{3}(2(\frac{4}{3}\hat{i} + 2\hat{j} - \frac{2}{3}\hat{k}) + (\hat{i} + 2\hat{j} + \hat{k}))\]
\(= \frac{1}{3}(\frac{8}{3}\hat{i} + 4\hat{j} - \frac{4}{3}\hat{k} + \hat{i} + 2\hat{j} + \hat{k})\)
\(= \frac{1}{3}(\frac{11}{3}\hat{i} + 6\hat{j} + \frac{2}{3}\hat{k})\)
\(= \frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k})\)
Therefore, the correct choice is: \( \frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k}) \).

Was this answer helpful?
1
2

Top Questions on Geometry and Vectors

View More Questions

Questions Asked in JEE Main exam

View More Questions