Since \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors and the angle between them is \( \frac{\pi}{3} \), we know that: \[ \mathbf{a} \cdot \mathbf{b} = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}. \] For the vectors \( \lambda \mathbf{a} + 2 \mathbf{b} \) and \( 3 \mathbf{a} - \lambda \mathbf{b} \) to be perpendicular, their dot product must be zero: \[ (\lambda \mathbf{a} + 2 \mathbf{b}) \cdot (3 \mathbf{a} - \lambda \mathbf{b}) = 0. \] Expanding this: \[ \lambda \cdot 3 + 2 \cdot (-\lambda) \cdot \frac{1}{2} = 0. \] Solving this gives \( \lambda = 0 \). Therefore, there is only 1 value of \( \lambda \).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
Match List - I with List - II.