Step 1: The median of a grouped data is given by the formula: \[ \text{Median} = \ell + \left( \frac{\frac{N}{2} - F}{f} \right) \times h \] where:
- \( \ell \) is the lower boundary of the median class, - \( N \) is the total number of observations,
- \( F \) is the cumulative frequency before the median class,
- \( f \) is the frequency of the median class,
- \( h \) is the class width. From the problem, we are given:
- Median class interval: 12-18, - Median class frequency \( f = 12 \), - \( \ell = 12 \),
- Median = 14,
- Number of students with marks less than 12 is 18.
Step 2: Using the formula: \[ 14 = 12 + \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] Simplifying the equation: \[ 14 - 12 = \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] \[ 2 = \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] \[ 2 = \frac{\frac{N}{2} - 18}{2} \] \[ 4 = \frac{N}{2} - 18 \] \[ \frac{N}{2} = 22 \quad \Rightarrow \quad N = 44 \]
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: