To solve this problem, we need to use the concept of the median in a grouped frequency distribution. Given that:
The formula for finding the median in a grouped data set is:
\(Median = L + \left( \frac{N/2 - F}{f} \right) \times h\)
Substitute the known values into the formula:
\(14 = 12 + \left( \frac{N/2 - 18}{12} \right) \times 6\)
Solving for \(N\):
\(14 - 12 = \left( \frac{N/2 - 18}{12} \right) \times 6\)
\(2 = \left( \frac{N/2 - 18}{12} \right) \times 6\)
\(2/6 = \frac{N/2 - 18}{12}\)
\(1/3 = \frac{N/2 - 18}{12}\)
Convert this to fraction and solve:
\(12 \times 1/3 = N/2 - 18\)
\(4 = N/2 - 18\)
\(N/2 = 4 + 18\)
\(N/2 = 22\)
\(N = 44\)
Therefore, the total number of students is 44. This matches with the given correct answer option.
Step 1: The median of a grouped data is given by the formula: \[ \text{Median} = \ell + \left( \frac{\frac{N}{2} - F}{f} \right) \times h \] where:
- \( \ell \) is the lower boundary of the median class, - \( N \) is the total number of observations,
- \( F \) is the cumulative frequency before the median class,
- \( f \) is the frequency of the median class,
- \( h \) is the class width. From the problem, we are given:
- Median class interval: 12-18, - Median class frequency \( f = 12 \), - \( \ell = 12 \),
- Median = 14,
- Number of students with marks less than 12 is 18.
Step 2: Using the formula: \[ 14 = 12 + \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] Simplifying the equation: \[ 14 - 12 = \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] \[ 2 = \left( \frac{\frac{N}{2} - 18}{12} \right) \times 6 \] \[ 2 = \frac{\frac{N}{2} - 18}{2} \] \[ 4 = \frac{N}{2} - 18 \] \[ \frac{N}{2} = 22 \quad \Rightarrow \quad N = 44 \]
Find the variance of the following frequency distribution:
| Class Interval | ||||
| 0--4 | 4--8 | 8--12 | 12--16 | |
| Frequency | 1 | 2 | 2 | 1 |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?


In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
The most stable carbocation from the following is: