To find the area of the right-angled triangle PQR, where \( R(3,-2,1) \) and \( Q(10,-3,-1) \), we first need to find point \( P \), the foot of the perpendicular from \( Q \) to the line:
\[ \frac{x-3}{7} = \frac{y-2}{-1} = \frac{z+1}{-2} \]
This line can be expressed in vector form as:
\(\mathbf{r} = \langle3,2,-1\rangle + \lambda\langle7,-1,-2\rangle\).
The direction vector of the line is \(\mathbf{a} = \langle7,-1,-2\rangle\), point \( Q \) is \(\langle10,-3,-1\rangle\), and a point on the line can be taken as \(\langle3,2,-1\rangle\).
The vector \(\mathbf{PQ}\) is perpendicular to the line's direction. For PQ calculated at point \(\langle x,y,z\rangle\) (on the line),
\(\mathbf{PQ}=\langle x-10,y+3,z+1\rangle\).
Since \(\mathbf{PQ}\) is perpendicular to the line's direction vector:
\[\langle x-10,y+3,z+1\rangle\cdot\langle7,-1,-2\rangle=0\]
Substitute \(\mathbf{r} = \langle3+7\lambda,2-\lambda,-1-2\lambda\rangle\) from the line equation:
\[\langle3+7\lambda-10,2-\lambda+3,-1-2\lambda+1\rangle\cdot\langle7,-1,-2\rangle=0\]
Simplifying,
\[\langle7\lambda-7,-\lambda+5,-2\lambda\rangle\cdot\langle7,-1,-2\rangle=0\]
Expanding, \(49\lambda-49+\lambda-5+4\lambda=0\). Further simplify:
\[54\lambda-54=0\Rightarrow \lambda=1\]
Substitute back to find \(P\):
\(x=3+7\times1=10,\ y=2-1=1,\ z=-1-2=-3\), so \(P(10,1,-3)\).
To find the area of triangle PQR:
Vectors: \(\mathbf{PQ}=\langle0,-4,-2\rangle\) and \(\mathbf{PR}=\langle-7,-3,4\rangle\).
The cross product, \(\mathbf{PQ}\times\mathbf{PR}\):
\(\det\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\0&-4&-2\\-7&-3&4\end{vmatrix}\)=\[ \mathbf{i}(-4\times4+2\times3)-\mathbf{j}(0\times4+2\times7)+\mathbf{k}(0\times(-3)+4\times7)\] = \(\mathbf{i}(-10)-\mathbf{j}(14)+\mathbf{k}(28)\)
=\(\langle-10,-14,28\rangle\)
The magnitude is:
\(|\langle-10,-14,28\rangle|=\sqrt{(-10)^2+(-14)^2+28^2}\) = \(\sqrt{100+196+784} = \sqrt{1080}\)
Area of triangle: \( \frac{1}{2}|\mathbf{PQ}\times\mathbf{PR}|=\frac{\sqrt{1080}}{2}=3\sqrt{30}\)
Thus, the area is \(3\sqrt{30} \).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: