To determine the probability of getting a sum of 4 or 5 when both dice are thrown, we must first understand the face distribution of the two dice:
Now, let's calculate the total number of possible outcomes when throwing both dice. Since each die has 6 faces, the total outcomes are:
\(6 \times 6 = 36\)
Next, we calculate the number of favorable outcomes for each sum.
Now count the probability for each combination:
Now count the probability for each combination:
Add up all the probabilities of getting either a sum of 4 or 5:
\(\left(\frac{4}{36} + \frac{4}{36} + \frac{1}{36}\right) + \left(\frac{2}{36} + \frac{4}{36} + \frac{2}{36} + \frac{1}{36}\right) = \frac{18}{36} = \frac{1}{2}\)
Thus, the probability of getting a sum of 4 or 5 is \(\frac{1}{2}\). Therefore, the correct option is:
To determine the probability that the sum of numbers on two special dice is either 4 or 5, we analyze the possible outcomes and their probabilities.
1. Probability Distributions:
For die \( D_1 \):
- \( P(D_1=1) = \frac{1}{3} \)
- \( P(D_1=2) = \frac{1}{3} \)
- \( P(D_1=3) = \frac{1}{6} \)
- \( P(D_1=4) = \frac{1}{6} \)
For die \( D_2 \):
- \( P(D_2=1) = \frac{1}{6} \)
- \( P(D_2=2) = \frac{1}{3} \)
- \( P(D_2=3) = \frac{1}{3} \)
- \( P(D_2=4) = \frac{1}{6} \)
2. Calculating Probability for Sum = 4:
Possible combinations:
- (1, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (2, 2): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{9} + \frac{1}{9} + \frac{1}{36} = \frac{1}{4} \)
3. Calculating Probability for Sum = 5:
Possible combinations:
- (1, 4): \( \frac{1}{3} \times \frac{1}{6} = \frac{1}{18} \)
- (2, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 2): \( \frac{1}{6} \times \frac{1}{3} = \frac{1}{18} \)
- (4, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{18} + \frac{1}{9} + \frac{1}{18} + \frac{1}{36} = \frac{1}{4} \)
4. Final Probability Calculation:
The combined probability for sums of 4 or 5 is:
\( \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \)
Final Answer:
The probability is \(\boxed{\dfrac{1}{2}}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
Given below are two statements:
Statement I:
will undergo alkaline hydrolysis at a faster rate than 
Statement II:
In
intramolecular substitution takes place first by involving lone pair of electrons on nitrogen.
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is: