To determine the probability of getting a sum of 4 or 5 when both dice are thrown, we must first understand the face distribution of the two dice:
Now, let's calculate the total number of possible outcomes when throwing both dice. Since each die has 6 faces, the total outcomes are:
\(6 \times 6 = 36\)
Next, we calculate the number of favorable outcomes for each sum.
Now count the probability for each combination:
Now count the probability for each combination:
Add up all the probabilities of getting either a sum of 4 or 5:
\(\left(\frac{4}{36} + \frac{4}{36} + \frac{1}{36}\right) + \left(\frac{2}{36} + \frac{4}{36} + \frac{2}{36} + \frac{1}{36}\right) = \frac{18}{36} = \frac{1}{2}\)
Thus, the probability of getting a sum of 4 or 5 is \(\frac{1}{2}\). Therefore, the correct option is:
To determine the probability that the sum of numbers on two special dice is either 4 or 5, we analyze the possible outcomes and their probabilities.
1. Probability Distributions:
For die \( D_1 \):
- \( P(D_1=1) = \frac{1}{3} \)
- \( P(D_1=2) = \frac{1}{3} \)
- \( P(D_1=3) = \frac{1}{6} \)
- \( P(D_1=4) = \frac{1}{6} \)
For die \( D_2 \):
- \( P(D_2=1) = \frac{1}{6} \)
- \( P(D_2=2) = \frac{1}{3} \)
- \( P(D_2=3) = \frac{1}{3} \)
- \( P(D_2=4) = \frac{1}{6} \)
2. Calculating Probability for Sum = 4:
Possible combinations:
- (1, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (2, 2): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{9} + \frac{1}{9} + \frac{1}{36} = \frac{1}{4} \)
3. Calculating Probability for Sum = 5:
Possible combinations:
- (1, 4): \( \frac{1}{3} \times \frac{1}{6} = \frac{1}{18} \)
- (2, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 2): \( \frac{1}{6} \times \frac{1}{3} = \frac{1}{18} \)
- (4, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{18} + \frac{1}{9} + \frac{1}{18} + \frac{1}{36} = \frac{1}{4} \)
4. Final Probability Calculation:
The combined probability for sums of 4 or 5 is:
\( \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \)
Final Answer:
The probability is \(\boxed{\dfrac{1}{2}}\).
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 