To determine the probability that the sum of numbers on two special dice is either 4 or 5, we analyze the possible outcomes and their probabilities.
1. Probability Distributions:
For die \( D_1 \):
- \( P(D_1=1) = \frac{1}{3} \)
- \( P(D_1=2) = \frac{1}{3} \)
- \( P(D_1=3) = \frac{1}{6} \)
- \( P(D_1=4) = \frac{1}{6} \)
For die \( D_2 \):
- \( P(D_2=1) = \frac{1}{6} \)
- \( P(D_2=2) = \frac{1}{3} \)
- \( P(D_2=3) = \frac{1}{3} \)
- \( P(D_2=4) = \frac{1}{6} \)
2. Calculating Probability for Sum = 4:
Possible combinations:
- (1, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (2, 2): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{9} + \frac{1}{9} + \frac{1}{36} = \frac{1}{4} \)
3. Calculating Probability for Sum = 5:
Possible combinations:
- (1, 4): \( \frac{1}{3} \times \frac{1}{6} = \frac{1}{18} \)
- (2, 3): \( \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)
- (3, 2): \( \frac{1}{6} \times \frac{1}{3} = \frac{1}{18} \)
- (4, 1): \( \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \)
Total probability: \( \frac{1}{18} + \frac{1}{9} + \frac{1}{18} + \frac{1}{36} = \frac{1}{4} \)
4. Final Probability Calculation:
The combined probability for sums of 4 or 5 is:
\( \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \)
Final Answer:
The probability is \(\boxed{\dfrac{1}{2}}\).
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: