To solve the given problem, we need to evaluate \[\cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right)\] where \( \frac{\pi}{2} \leq x \leq \frac{3\pi}{4} \).
First, recognize that \[\frac{12}{13}\] and \[\frac{5}{13}\] are components of a vector and can be associated with the cosine and sine of an angle. Note that:
\({\cos \theta = \frac{12}{13}}\) and \({\sin \theta = \frac{5}{13}}\) for \({\theta}\) such that:
\({\cos^2 \theta + \sin^2 \theta = 1}\).
Therefore, the given expression inside the inverse cosine is:
\(\cos(x-\theta)\) where \(\theta = \tan^{-1}\left(\frac{5}{12}\right)\) because:
\(\tan \theta = \frac{5}{12}\).
Hence, we express the problem as:
\[\cos^{-1}(\cos(x - \theta))\].
Given \(x - \theta\) where \( \theta = \tan^{-1} \left(\frac{5}{12}\right)\) and considering the domain of \(x\), we need to evaluate this within principal values of cosine's inverse function, which means:
\(\cos^{-1}(\cos(x - \theta)) = x - \theta\).
So,
\(\cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right) = x - \tan^{-1} \left( \frac{5}{12} \right)\).
This confirms the correct answer: \( x - \tan^{-1} \left(\frac{5}{12}\right) \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).