To solve this problem, we need to simplify the expression \( \cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right) \) given the range \( \frac{\pi}{2} \leq x \leq \frac{3\pi}{4} \).
Let \( a = \frac{12}{13} \) and \( b = \frac{5}{13} \).
\(\frac{12}{13} \cos x + \frac{5}{13} \sin x = \cos(\theta) \cos x + \sin(\theta) \sin x = \cos(x - \theta)\).
This matches with the given option:
\( x - \tan^{-1} \left(\frac{5}{12}\right) \).
Hence, the correct answer is
Option: \( x - \tan^{-1} \left(\frac{5}{12}\right) \).
To solve the given problem, we need to evaluate \[\cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right)\] where \( \frac{\pi}{2} \leq x \leq \frac{3\pi}{4} \).
First, recognize that \[\frac{12}{13}\] and \[\frac{5}{13}\] are components of a vector and can be associated with the cosine and sine of an angle. Note that:
\({\cos \theta = \frac{12}{13}}\) and \({\sin \theta = \frac{5}{13}}\) for \({\theta}\) such that:
\({\cos^2 \theta + \sin^2 \theta = 1}\).
Therefore, the given expression inside the inverse cosine is:
\(\cos(x-\theta)\) where \(\theta = \tan^{-1}\left(\frac{5}{12}\right)\) because:
\(\tan \theta = \frac{5}{12}\).
Hence, we express the problem as:
\[\cos^{-1}(\cos(x - \theta))\].
Given \(x - \theta\) where \( \theta = \tan^{-1} \left(\frac{5}{12}\right)\) and considering the domain of \(x\), we need to evaluate this within principal values of cosine's inverse function, which means:
\(\cos^{-1}(\cos(x - \theta)) = x - \theta\).
So,
\(\cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right) = x - \tan^{-1} \left( \frac{5}{12} \right)\).
This confirms the correct answer: \( x - \tan^{-1} \left(\frac{5}{12}\right) \).
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 