Determinant Calculation for Infinitely Many Solutions
For infinitely many solutions, the determinant of the coefficient matrix must be zero:
D = \( \begin{vmatrix} \lambda - 1 & \lambda - 4 & \lambda \\ \lambda & \lambda - 1 & \lambda - 4 \\ \lambda + 1 & \lambda + 2 & - (\lambda + 2) \end{vmatrix} \) = 0
Expanding the determinant:
(\(\lambda - 3\)(2\(\lambda\) + 1)) = 0
This gives us:
\(\lambda = 3\) or \(\lambda = -\frac{1}{2}\)
Next, we find \(\lambda^2 + \lambda\).
For \(\lambda = 3\):
\(\lambda^2 + \lambda = 3^2 + 3 = 9 + 3 = 12\)
Thus, the correct answer is:
\(\lambda^2 + \lambda = 12\)
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to: