If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
We are given that matrices \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular. We need to find the inverse of the expression:
\(A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B\)
Recall that for a matrix \( M \), the adjugate is related to the inverse by the formula:
\(\text{adj}(M^{-1}) = |M| M\)
where \( |M| \) is the determinant of matrix \( M \).
Apply this to both matrices \( A^{-1} \) and \( B^{-1} \):
\(\text{adj}(A^{-1}) = |A^{-1}| A\)
\(\text{adj}(B^{-1}) = |B^{-1}| B\)
Since \( |A^{-1}| = \frac{1}{|A|} \) and \( |B^{-1}| = \frac{1}{|B|} \), replace these in their respective equations:
\(\text{adj}(A^{-1}) = \frac{1}{|A|} A\)
\(\text{adj}(B^{-1}) = \frac{1}{|B|} B\)
Substituting these into the expression \( A (\text{adj}(A^{-1}) + \text{adj}(B^{-1})) B \), we have:
\(A \left( \frac{1}{|A|} A + \frac{1}{|B|} B \right) B\)
Breaking it down:
\(= A \left( \frac{A}{|A|} + \frac{B}{|B|} \right) B\)
Thus, the expression reduces to:
\(= \frac{1}{|A||B|} A (A + B) B\)
The inverse of this expression can be found as:
By using properties of inverses where
\((XY)^{-1} = Y^{-1} X^{-1}\)
So, the inverse is:
\(\frac{1}{|A| B|} \left( \text{adj}(B) + \text{adj}(A) \right)\)
The correct option is:
\(\frac{1}{|A|B|} \left( \text{adj}(B) + \text{adj}(A) \right)\)
To find the inverse of the matrix \(C = A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B\), we need to manipulate the expression using properties of adjugate and inverse matrices. Let's break it down:
The adjugate of an inverse matrix can be expressed in terms of the original matrix:
\[\text{adj}(X^{-1}) = |X|X\] Hence, \(\text{adj}(A^{-1}) = |A|A\) and \(\text{adj}(B^{-1}) = |B|B\).
Substitute these into the given expression:
\[\text{adj}(A^{-1}) + \text{adj}(B^{-1}) = |A|A + |B|B\]
The matrix \(C\) becomes:
\[C = A(|A|A + |B|B)B\]
Distribute the multiplication:
\[C = |A|A^2B + |B|AB^2\]
We need the inverse of this matrix \(C\). Using properties of inverses:
\[C^{-1} = \left(|A|A^2B + |B|AB^2\right)^{-1} = \frac{1}{|C|}\left(\text{adj}\left(|A|A^2B + |B|AB^2\right)\right)\]
Assuming:\(|C| = |A||B|\), \[C^{-1} =\frac{1}{|A||B|}\left(\text{adj}(|A|A^2B + |B|AB^2)\right)\]
Since adjugates are linear over matrix addition:
\[\text{adj}(|A|A^2B + |B|AB^2) = \text{adj}(|A|A^2B) + \text{adj}(|B|AB^2)\]
Applying properties of matrices:
\[\text{adj}(|A|A^2B) = |A|\text{adj}(A^2B)= |A|\text{adj}(A^2)\text{adj}(B)\]\[\text{adj}(|B|AB^2) = |B|\text{adj}(A)\text{adj}(B^2)\]
Thus, the inverse of \(C\) becomes:
\[C^{-1} = \frac{1}{|A||B|} \left( \text{adj}(B) + \text{adj}(A) \right)\]
This matches the answer:
\(\frac{1}{|A||B|} \left( \text{adj}(B) + \text{adj}(A) \right)\)
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is