To solve the problem, let's analyze the given information and apply relevant circle geometry principles.
The arc AC subtends a right angle, making it a quarter of the circle. We know:
Let the length of arc AB be \(x\) and the length of arc BC be \(y\). Thus, \(x/y = 1/5\), giving \(y = 5x\).
Since the total arc AC subtends a right angle (90 degrees),
Substituting \(y = 5x\) into the equation:
Thus, the angle subtended by arc AB at the center \(O\) is \(15^\circ\) and by arc BC is \(75^\circ\).
Now, use vector analysis: \( \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB} \). Since points \(A\), \(B\), and \(C\) are on the circle, we can convert the angular measure into the unit circle coordinates:
Substitute these into the equation:
Solve the equations:
The expected form \(\alpha = \sqrt{2} (\sqrt{3}-1) \beta\) gives:
Thus, the correct answer is \(\boxed{2-\sqrt{3}}\).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: