If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
We are given that \( T_n = S_n - S_{n-1} \), where:
\[ T_n = \frac{1}{8} (2n-1)(2n+1)(2n+3) \] Now, let's simplify the expression for \( T_n \): \[ T_n = \frac{8}{(2n-1)(2n+1)(2n+3)} \]
We are tasked with calculating the limit: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \] Substituting the expression for \( T_n \) into the sum: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} = \lim_{n \to \infty} \frac{8}{4} \sum_{r=1}^n \frac{1}{(2n-1)(2n+1)(2n+3)} \] Simplifying the constant factor: \[ = 2 \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} \]
The series can be expressed as a telescoping series. Observing the pattern in the terms: \[ \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} = \left( \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \left( \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} \right) + \dots \] This is a telescoping series, where many terms cancel out, leaving us with: \[ \lim_{n \to \infty} 2 \left( \frac{1}{1 \cdot 3} \right) \]
The limit of the series as \( n \to \infty \) gives: \[ \frac{2}{3} \]
Therefore, the value of the limit is: \[ \boxed{\frac{2}{3}} \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).