If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
We are given that \( T_n = S_n - S_{n-1} \), where:
\[ T_n = \frac{1}{8} (2n-1)(2n+1)(2n+3) \] Now, let's simplify the expression for \( T_n \): \[ T_n = \frac{8}{(2n-1)(2n+1)(2n+3)} \]
We are tasked with calculating the limit: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \] Substituting the expression for \( T_n \) into the sum: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} = \lim_{n \to \infty} \frac{8}{4} \sum_{r=1}^n \frac{1}{(2n-1)(2n+1)(2n+3)} \] Simplifying the constant factor: \[ = 2 \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} \]
The series can be expressed as a telescoping series. Observing the pattern in the terms: \[ \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} = \left( \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \left( \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} \right) + \dots \] This is a telescoping series, where many terms cancel out, leaving us with: \[ \lim_{n \to \infty} 2 \left( \frac{1}{1 \cdot 3} \right) \]
The limit of the series as \( n \to \infty \) gives: \[ \frac{2}{3} \]
Therefore, the value of the limit is: \[ \boxed{\frac{2}{3}} \]
\(\displaystyle \lim_{n\to\infty}\sum_{r=1}^{n}\frac{1}{T_r}=\frac{2}{3}.\) (Option 3)
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
