If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
We are given that \( T_n = S_n - S_{n-1} \), where:
\[ T_n = \frac{1}{8} (2n-1)(2n+1)(2n+3) \] Now, let's simplify the expression for \( T_n \): \[ T_n = \frac{8}{(2n-1)(2n+1)(2n+3)} \]
We are tasked with calculating the limit: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \] Substituting the expression for \( T_n \) into the sum: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} = \lim_{n \to \infty} \frac{8}{4} \sum_{r=1}^n \frac{1}{(2n-1)(2n+1)(2n+3)} \] Simplifying the constant factor: \[ = 2 \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} \]
The series can be expressed as a telescoping series. Observing the pattern in the terms: \[ \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} = \left( \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \left( \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} \right) + \dots \] This is a telescoping series, where many terms cancel out, leaving us with: \[ \lim_{n \to \infty} 2 \left( \frac{1}{1 \cdot 3} \right) \]
The limit of the series as \( n \to \infty \) gives: \[ \frac{2}{3} \]
Therefore, the value of the limit is: \[ \boxed{\frac{2}{3}} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).