If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
We are given that \( T_n = S_n - S_{n-1} \), where:
\[ T_n = \frac{1}{8} (2n-1)(2n+1)(2n+3) \] Now, let's simplify the expression for \( T_n \): \[ T_n = \frac{8}{(2n-1)(2n+1)(2n+3)} \]
We are tasked with calculating the limit: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \] Substituting the expression for \( T_n \) into the sum: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} = \lim_{n \to \infty} \frac{8}{4} \sum_{r=1}^n \frac{1}{(2n-1)(2n+1)(2n+3)} \] Simplifying the constant factor: \[ = 2 \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} \]
The series can be expressed as a telescoping series. Observing the pattern in the terms: \[ \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} = \left( \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \left( \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} \right) + \dots \] This is a telescoping series, where many terms cancel out, leaving us with: \[ \lim_{n \to \infty} 2 \left( \frac{1}{1 \cdot 3} \right) \]
The limit of the series as \( n \to \infty \) gives: \[ \frac{2}{3} \]
Therefore, the value of the limit is: \[ \boxed{\frac{2}{3}} \]
\(\displaystyle \lim_{n\to\infty}\sum_{r=1}^{n}\frac{1}{T_r}=\frac{2}{3}.\) (Option 3)
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?


In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
The most stable carbocation from the following is: