If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
We are given that \( T_n = S_n - S_{n-1} \), where:
\[ T_n = \frac{1}{8} (2n-1)(2n+1)(2n+3) \] Now, let's simplify the expression for \( T_n \): \[ T_n = \frac{8}{(2n-1)(2n+1)(2n+3)} \]
We are tasked with calculating the limit: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \] Substituting the expression for \( T_n \) into the sum: \[ \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} = \lim_{n \to \infty} \frac{8}{4} \sum_{r=1}^n \frac{1}{(2n-1)(2n+1)(2n+3)} \] Simplifying the constant factor: \[ = 2 \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} \]
The series can be expressed as a telescoping series. Observing the pattern in the terms: \[ \sum_{r=1}^n \frac{1}{(2r-1)(2r+1)(2r+3)} = \left( \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} \right) + \left( \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} \right) + \dots \] This is a telescoping series, where many terms cancel out, leaving us with: \[ \lim_{n \to \infty} 2 \left( \frac{1}{1 \cdot 3} \right) \]
The limit of the series as \( n \to \infty \) gives: \[ \frac{2}{3} \]
Therefore, the value of the limit is: \[ \boxed{\frac{2}{3}} \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: