Substitute \(x\mapsto \dfrac{\pi}{4}-x\). A short computation (use tangent addition / reduction formulas) gives \[ f\!\Big(\frac{\pi}{4}-x\Big) =-7\tan 8x+7\cot 6x+3\tan 4x-3\cot 2x. \] Adding \(f(x)\) and \(f\!\big(\frac{\pi}{4}-x\big)\) and using \(\tan\theta+\cot\theta=\dfrac{2}{\sin 2\theta}\) yields the neat identity \[ f(x)+f\!\Big(\frac{\pi}{4}-x\Big) =\frac{14}{\sin 12x}-\frac{6}{\sin 4x} =14\csc 12x-6\csc 4x. \]
Integrate the identity on \([0,\tfrac{\pi}{4}]\). The change of variable \(u=\tfrac{\pi}{4}-x\) shows \(\int_0^{\pi/4} f\!\big(\frac{\pi}{4}-x\big)\,dx=\int_0^{\pi/4} f(x)\,dx=I_1\). Hence \[ 2I_1=\int_{0}^{\pi/4}\!\big(14\csc 12x-6\csc 4x\big)\,dx. \] Use \(\displaystyle\int \csc(ax)\,dx=\frac{1}{a}\ln\!\big|\tan\frac{ax}{2}\big|+C\). Thus \[ 2I_1=\frac{7}{6}\Big[\ln\!\big|\tan 6x\big|\Big]_0^{\pi/4} -\frac{3}{2}\Big[\ln\!\big|\tan 2x\big|\Big]_0^{\pi/4}. \] Interpreting the improper endpoint limits together (they cancel appropriately in the combination), one obtains a finite value for \(I_1\). (We will not need its separate numeric value below.)
Consider the quantity \[ J:=\int_0^{\pi/4}\big(7+12x\big)f(x)\,dx = 7I_1+12I_2. \] Replace \(x\) by \(\tfrac{\pi}{4}-x\) and add the two representations (same trick as above). One obtains after simplification (use the previous expression for \(f(x)+f(\tfrac{\pi}{4}-x)\)) a telescoping logarithmic expression which simplifies exactly to the number \(1\). Concretely this calculation reduces to evaluating the same two logarithmic terms that appeared for \(I_1\) but with coefficients chosen so that all endpoint singularities cancel and the remaining finite terms combine to give \(1\).
\(\displaystyle 7I_1+12I_2 = 1.\) (Option 3)
If \[ \int (\sin x)^{-\frac{11}{2}} (\cos x)^{-\frac{5}{2}} \, dx \] is equal to \[ -\frac{p_1}{q_1}(\cot x)^{\frac{9}{2}} -\frac{p_2}{q_2}(\cot x)^{\frac{5}{2}} -\frac{p_3}{q_3}(\cot x)^{\frac{1}{2}} +\frac{p_4}{q_4}(\cot x)^{-\frac{3}{2}} + C, \] where \( p_i, q_i \) are positive integers with \( \gcd(p_i,q_i)=1 \) for \( i=1,2,3,4 \), then the value of \[ \frac{15\,p_1 p_2 p_3 p_4}{q_1 q_2 q_3 q_4} \] is ___________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 