Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:
To make a relation \(R\) on a set an equivalence relation, \(R\) must satisfy three properties: reflexivity, symmetry, and transitivity. Let's evaluate the given relation \(R = \{(1, 2), (2, 3), (3, 3)\}\) on the set \(\{1, 2, 3, 4\}\) step-by-step:
Summarizing the elements needed:
Total elements to be added: \(3 + 2 + 1 = 6\). However, we mistakenly left out the need for reflexive connection for (1, 2) which will further require:
Therefore, the minimum number of elements to add so that \(R\) becomes an equivalence relation is 7.
To make the relation \( R = \{(1, 2), (2, 3), (3, 3)\} \) an equivalence relation on the set \( \{1, 2, 3, 4\} \), we need to ensure it satisfies three properties: reflexivity, symmetry, and transitivity.
1. Reflexivity: Each element must be related to itself. Therefore, we must add the pairs: \((1,1)\), \((2,2)\), \((4,4)\).
2. Symmetry: If \((a, b)\) is in the relation, then \((b, a)\) must also be in it. For existing pairs, add: \((2,1)\), \((3,2)\).
3. Transitivity: If \((a, b)\) and \((b, c)\) are in the relation, then \((a, c)\) must also be in it. Evaluate existing pairs:
Now, enumerating all added pairs, we find: \((1,1)\), \((2,2)\), \((4,4)\), \((2,1)\), \((3,2)\), \((1,3)\), \((3,1)\). Therefore, 7 elements are added in total.
Conclusion: The minimum number of elements to be added is \(7\).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
The output of the circuit is low (zero) for:

(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below