Let R = {(1, 2), (2, 3), (3, 3)} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:}
To make the relation \( R = \{(1, 2), (2, 3), (3, 3)\} \) an equivalence relation on the set \( \{1, 2, 3, 4\} \), we need to ensure it satisfies three properties: reflexivity, symmetry, and transitivity.
1. Reflexivity: Each element must be related to itself. Therefore, we must add the pairs: \((1,1)\), \((2,2)\), \((4,4)\).
2. Symmetry: If \((a, b)\) is in the relation, then \((b, a)\) must also be in it. For existing pairs, add: \((2,1)\), \((3,2)\).
3. Transitivity: If \((a, b)\) and \((b, c)\) are in the relation, then \((a, c)\) must also be in it. Evaluate existing pairs:
Now, enumerating all added pairs, we find: \((1,1)\), \((2,2)\), \((4,4)\), \((2,1)\), \((3,2)\), \((1,3)\), \((3,1)\). Therefore, 7 elements are added in total.
Conclusion: The minimum number of elements to be added is \(7\).
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: