Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:
To make a relation \(R\) on a set an equivalence relation, \(R\) must satisfy three properties: reflexivity, symmetry, and transitivity. Let's evaluate the given relation \(R = \{(1, 2), (2, 3), (3, 3)\}\) on the set \(\{1, 2, 3, 4\}\) step-by-step:
Summarizing the elements needed:
Total elements to be added: \(3 + 2 + 1 = 6\). However, we mistakenly left out the need for reflexive connection for (1, 2) which will further require:
Therefore, the minimum number of elements to add so that \(R\) becomes an equivalence relation is 7.
To make the relation \( R = \{(1, 2), (2, 3), (3, 3)\} \) an equivalence relation on the set \( \{1, 2, 3, 4\} \), we need to ensure it satisfies three properties: reflexivity, symmetry, and transitivity.
1. Reflexivity: Each element must be related to itself. Therefore, we must add the pairs: \((1,1)\), \((2,2)\), \((4,4)\).
2. Symmetry: If \((a, b)\) is in the relation, then \((b, a)\) must also be in it. For existing pairs, add: \((2,1)\), \((3,2)\).
3. Transitivity: If \((a, b)\) and \((b, c)\) are in the relation, then \((a, c)\) must also be in it. Evaluate existing pairs:
Now, enumerating all added pairs, we find: \((1,1)\), \((2,2)\), \((4,4)\), \((2,1)\), \((3,2)\), \((1,3)\), \((3,1)\). Therefore, 7 elements are added in total.
Conclusion: The minimum number of elements to be added is \(7\).
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: