Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:
To make a relation \(R\) on a set an equivalence relation, \(R\) must satisfy three properties: reflexivity, symmetry, and transitivity. Let's evaluate the given relation \(R = \{(1, 2), (2, 3), (3, 3)\}\) on the set \(\{1, 2, 3, 4\}\) step-by-step:
Summarizing the elements needed:
Total elements to be added: \(3 + 2 + 1 = 6\). However, we mistakenly left out the need for reflexive connection for (1, 2) which will further require:
Therefore, the minimum number of elements to add so that \(R\) becomes an equivalence relation is 7.
To make the relation \( R = \{(1, 2), (2, 3), (3, 3)\} \) an equivalence relation on the set \( \{1, 2, 3, 4\} \), we need to ensure it satisfies three properties: reflexivity, symmetry, and transitivity.
1. Reflexivity: Each element must be related to itself. Therefore, we must add the pairs: \((1,1)\), \((2,2)\), \((4,4)\).
2. Symmetry: If \((a, b)\) is in the relation, then \((b, a)\) must also be in it. For existing pairs, add: \((2,1)\), \((3,2)\).
3. Transitivity: If \((a, b)\) and \((b, c)\) are in the relation, then \((a, c)\) must also be in it. Evaluate existing pairs:
Now, enumerating all added pairs, we find: \((1,1)\), \((2,2)\), \((4,4)\), \((2,1)\), \((3,2)\), \((1,3)\), \((3,1)\). Therefore, 7 elements are added in total.
Conclusion: The minimum number of elements to be added is \(7\).
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
