Let
\[
R = \begin{pmatrix}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{pmatrix}
\text{ be a non-zero } 3 \times 3 \text{ matrix, where}
\]
\[
x = \sin \theta, \quad y = \sin \left( \theta + \frac{2\pi}{3} \right), \quad z = \sin \left( \theta + \frac{4\pi}{3} \right)
\]
and \( \theta \neq 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi \). For a square matrix \( M \), let \( \text{trace}(M) \) denote the sum of all the diagonal entries of \( M \). Then, among the statements:
- \(\text{Trace}(R) = 0\)
- If \(\text{trace}(\text{adj}(\text{adj}(R))) = 0\), then \( R \) has exactly one non-zero entry.
Which of the following is true?