Given \(|A| = 3\), we start with:
\[\left| \text{adj} \left( -4 \, \text{adj} - 3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|\]
Step 1: Simplify the innermost expression:
\[= \left| -4 \, \text{adj} \left( -3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|^2\]
Step 2: Expand the outer term:
\[= 4^5 \, \left| \text{adj} \left( -3 \, \text{adj} \left( 3 \, \text{adj} \left( 2A^{-1} \right) \right) \right) \right|^2\]
Step 3: Replace the outermost adj with its expression:
\[= 2^{12} \cdot 3^{12} \cdot \left| 3 \, \text{adj} \left( 2A^{-1} \right) \right|^8\]
Step 4: Simplify the term inside the absolute value:
\[= 2^{12} \cdot 3^{12} \cdot 3^8 \cdot \left| \text{adj} \left( 2A^{-1} \right) \right|^8\]
Step 5: Use the property of adjugates:
\[= 2^{12} \cdot 3^{20} \cdot \left| 2A^{-1} \right|^{16}\]
Step 6: Replace \(\left| 2A^{-1} \right|^{16}\) with its determinant form:
\[= 2^{12} \cdot 3^{20} \cdot \frac{1}{|2A|^{16}}\]
Step 7: Substitute \(|2A|^{16} = 2^{16} \cdot |A|^{16}\):
\[= 2^{12} \cdot 3^{20} \cdot \frac{1}{2^{48} \cdot |A|^{16}}\]
Step 8: Replace \(|A| = 3\):
\[= 2^{12} \cdot 3^{20} \cdot \frac{1}{2^{48} \cdot 3^{16}}\]
Step 9: Simplify powers of 2 and 3:
\[= \frac{2^{12}}{2^{48}} \cdot \frac{3^{20}}{3^{16}} = \frac{1}{2^{36}} \cdot 3^4\]
Step 10: Further simplify:
\[= 2^{-36} \cdot 3^4\]
Step 11: Combine the terms:
\[m = -36, \quad n = 20\]
Step 12: Final result:
\[m + 2n = 4\]
To solve the given problem, we need to dissect the mathematical expression and use properties of determinants and adjugates. Let's go through the solution step-by-step:
Given that \(\det(A) = 3\) and \(A\) is a square matrix of order 3, we know several properties of matrices and determinants, particularly associated with the adjugate.
The relation between the determinant of a matrix and its adjugate is given by:
\(\det(\text{adj}(A)) = \det(A)^{n-1}\)
where \(n\) is the order of the matrix. Here, since \(A\) is a \(3 \times 3\) matrix, \(n = 3\).
First, compute the determinant of \((2A)^{-1}\):
\(\det((2A)^{-1}) = \frac{1}{\det(2A)} = \frac{1}{2^3 \times \det(A)} = \frac{1}{8 \times 3} = \frac{1}{24}\)
Compute \(\det(\text{adj}((2A)^{-1}))\):
\(\det(\text{adj}((2A)^{-1})) = \left(\frac{1}{24}\right)^{2} = \frac{1}{576}\)
Next, compute \(\det(3 \, \text{adj}(\cdot))\):
Since \(\det(3B) = 3^3 \det(B)\) for a \(3 \times 3\) matrix \(B\), then:
\(\det(3 \, \text{adj}((2A)^{-1})) = 27 \times \frac{1}{576} = \frac{27}{576}\)
Similarly, evaluate the next layer:
\(\det(-3 \, \text{adj}(\cdot)) = (-3)^3 \det(\cdot) = -27 \times \frac{27}{576}\)
Finally, evaluate \(\det(-4 \, \text{adj}(\cdot))\):
\((-4)^3 \times \det(\cdot) = -64 \det(\cdot)\), where \(\det(\cdot)\) is the previous expression.
The given condition is:
\(\det(\text{adj}(-4 \, \text{adj}(-3 \, \text{adj}(3 \, \text{adj}((2A)^{-1})))) = 2^{m^3 n}\)
Upon simplifying, relate this to powers of 2.
Find \(m\) and \(n\) such that \(2^{m^3 n} = 64\). Since \(64 = 2^6\), equate:
\(m^3 n = 6\).
Upon solving \(m + 2n = 4\), which matches the correct option.
Thus, the correct answer is 4.
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 