Since \( \sin 5x \in [-1, 1] \), we have:
\[-\sin 5x \in [-1, 1]\]
Therefore:
\[7 - \sin 5x \in [6, 8]\]
Thus, the function \( f(x) = \frac{1}{7 - \sin 5x} \) takes values in the interval:
\[\frac{1}{7 - \sin 5x} \in \left[\frac{1}{8}, \frac{1}{6}\right]\]
Therefore, the range of \( f(x) \) is:
\[\left[\frac{1}{8}, \frac{1}{6}\right].\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: