Since \( \sin 5x \in [-1, 1] \), we have:
\[-\sin 5x \in [-1, 1]\]
Therefore:
\[7 - \sin 5x \in [6, 8]\]
Thus, the function \( f(x) = \frac{1}{7 - \sin 5x} \) takes values in the interval:
\[\frac{1}{7 - \sin 5x} \in \left[\frac{1}{8}, \frac{1}{6}\right]\]
Therefore, the range of \( f(x) \) is:
\[\left[\frac{1}{8}, \frac{1}{6}\right].\]
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.