We are given the differential equation: \[ \frac{dy}{dx} = \frac{y}{x}. \]
This is a separable differential equation, so we can rewrite it as: \[ \frac{dy}{y} = \frac{dx}{x}. \]
Now, integrating both sides: \[ \int \frac{1}{y} dy = \int \frac{1}{x} dx, \] \[ \ln |y| = \ln |x| + C. \]
Exponentiating both sides: \[ |y| = e^{\ln |x| + C} = |x| e^C. \] Thus, \( y = Cx \).
Using the initial condition \( y(1) = 2 \), we get: \[ 2 = C(1) \quad \Rightarrow \quad C = 2. \]
Therefore, the solution is \( y = 2x \).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
