We are tasked with evaluating the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx. \]
We use the identity for \( \sin^2(x) \): \[ \sin^2(x) = \frac{1 - \cos(2x)}{2}. \]
Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \cos(2x)) \, dx. \]
We can now split the integral: \[ I = \frac{1}{2} \left[ \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \cos(2x) \, dx \right]. \]
Evaluating each integral: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}, \quad \int_0^{\frac{\pi}{2}} \cos(2x) \, dx = 0. \]
Therefore, the value of the integral is: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: