We are tasked with evaluating the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx. \]
We use the identity for \( \sin^2(x) \): \[ \sin^2(x) = \frac{1 - \cos(2x)}{2}. \]
Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \cos(2x)) \, dx. \]
We can now split the integral: \[ I = \frac{1}{2} \left[ \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \cos(2x) \, dx \right]. \]
Evaluating each integral: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}, \quad \int_0^{\frac{\pi}{2}} \cos(2x) \, dx = 0. \]
Therefore, the value of the integral is: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}. \]
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: