Question:

Find the value of the integral \( \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx \).

Show Hint

Use the identity for \( \sin^2(x) \) to simplify the integral and break it into simpler parts for easier evaluation.
Updated On: Jan 22, 2025
  • \( \frac{\pi}{4} \)
  • \( \frac{\pi}{2} \)
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{6} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are tasked with evaluating the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx. \] 

We use the identity for \( \sin^2(x) \): \[ \sin^2(x) = \frac{1 - \cos(2x)}{2}. \] 

Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \cos(2x)) \, dx. \] 

We can now split the integral: \[ I = \frac{1}{2} \left[ \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \cos(2x) \, dx \right]. \] 

Evaluating each integral: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}, \quad \int_0^{\frac{\pi}{2}} \cos(2x) \, dx = 0. \] 

Therefore, the value of the integral is: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}. \]

Was this answer helpful?
0
0