First, rewrite the equation of the circle in standard form by completing the square for both \( x \) and \( y \).
The equation is: \[ 4x^2 + 4y^2 - 12x + 8y = 0. \] Divide through by 4: \[ x^2 + y^2 - 3x + 2y = 0. \]
Now complete the square for \( x \) and \( y \): \[ x^2 - 3x + \left(\frac{3}{2}\right)^2 + y^2 + 2y + 1 = \left(\frac{3}{2}\right)^2 + 1. \]
Simplifying: \[ \left(x - \frac{3}{2}\right)^2 + (y + 1)^2 = \frac{9}{4} + 1 = \frac{13}{4}. \]
Thus, the equation of the circle is: \[ \left(x - \frac{3}{2}\right)^2 + (y + 1)^2 = \frac{13}{4}. \]
The radius \( r \) is the square root of \( \frac{13}{4} \), which is \( \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2} \). Thus, the radius is \( \boxed{2} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 