To determine the value of \( \alpha \), let’s analyze the repeated composition of \( f(x) \).
Now, we calculate \( \sqrt{3\alpha + 1} \):
\[ \sqrt{3\alpha + 1} = \sqrt{3 \cdot 1023 + 1} = \sqrt{3072 + 1} = \sqrt{3072} = 1024. \]
Answer: 1024
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
