Given function:
\[
f(x) = \frac{2x}{\sqrt{1 + 9x^2}}
\]
Define:
\[
f^{(n)}(x) = (f \circ f \circ \cdots \circ f)(x), n \text{ times}
\]
Given:
\[
f^{(10)}(x) = \frac{2^{10} x}{\sqrt{1 + 9 \alpha x^2}}
\]
Step 1: Assume the form after \( n \) iterations
Assume for \( n \),
\[
f^{(n)}(x) = \frac{2^n x}{\sqrt{1 + 9 a_n x^2}}
\]
where \( a_n \) depends on \( n \).
Step 2: Use recursion relation
Apply \( f \):
\[
f^{(n+1)}(x) = f\left( f^{(n)}(x) \right) = \frac{2 \cdot f^{(n)}(x)}{\sqrt{1 + 9 (f^{(n)}(x))^2}} = \frac{2 \cdot \frac{2^n x}{\sqrt{1 + 9 a_n x^2}}}{\sqrt{1 + 9 \left( \frac{2^n x}{\sqrt{1 + 9 a_n x^2}} \right)^2}}
\]
Simplify denominator inside square root:
\[
1 + 9 \left( \frac{2^{2n} x^2}{1 + 9 a_n x^2} \right) = \frac{1 + 9 a_n x^2 + 9 \cdot 2^{2n} x^2}{1 + 9 a_n x^2}
\]
Thus,
\[
f^{(n+1)}(x) = \frac{2^{n+1} x}{\sqrt{1 + 9 a_n x^2} \cdot \sqrt{\frac{1 + 9 a_n x^2 + 9 \cdot 2^{2n} x^2}{1 + 9 a_n x^2}}} = \frac{2^{n+1} x}{\sqrt{1 + 9 a_n x^2 + 9 \cdot 2^{2n} x^2}}
\]
So,
\[
1 + 9 a_{n+1} x^2 = 1 + 9 a_n x^2 + 9 \cdot 2^{2n} x^2
\]
Equate coefficients:
\[
a_{n+1} = a_n + 2^{2n} = a_n + 4^{n}
\]
with initial condition \( a_1 = 1 \) because:
\[
f^{(1)}(x) = f(x) = \frac{2x}{\sqrt{1 + 9 \cdot 1 \cdot x^2}}
\]
Step 3: Find \( a_{10} \)
\[
a_{10} = \sum_{k=0}^9 4^{k} = \frac{4^{10} - 1}{4 - 1} = \frac{4^{10} - 1}{3}
\]
Calculate \( 4^{10} = (2^2)^{10} = 2^{20} = 1,048,576 \), so:
\[
a_{10} = \frac{1,048,576 - 1}{3} = \frac{1,048,575}{3} = 349,525
\]
Step 4: Find \( \sqrt{3\alpha + 1} \)
Given \( \alpha = a_{10} = 349,525 \), so:
\[
3\alpha + 1 = 3 \times 349,525 + 1 = 1,048,575 + 1 = 1,048,576 = 2^{20}
\]
Hence:
\[
\sqrt{3\alpha + 1} = \sqrt{2^{20}} = 2^{10} = 1024
\]
Final answer: \( \sqrt{3\alpha +1} = 1024 \)