Write the equation of the line passing through \( (-1, 2, 3) \) with direction ratios \( (l, m, n) \):
\[ x = -1 + \lambda l, \quad y = 2 + \lambda m, \quad z = 3 + \lambda n. \]
Intersection with \( L_1 \): For intersection, equate:
\[ -1 + \lambda l = 1 + 3\mu, \quad 2 + \lambda m = 2 + 2\mu, \quad 3 + \lambda n = -1 - 2\mu. \]
Intersection with \( L_2 \): For intersection, equate:
\[ -1 + \lambda l = -2 - 3\nu, \quad 2 + \lambda m = 2 + 4\nu, \quad 3 + \lambda n = 1 - 2\nu. \]
Solve for \( \alpha, \beta, \gamma, a, b, \) and \( c \).
Calculate:
\[ \frac{(\alpha + \beta + \gamma)^2}{a + b + c} = 196. \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32