Write the equation of the line passing through \( (-1, 2, 3) \) with direction ratios \( (l, m, n) \):
\[ x = -1 + \lambda l, \quad y = 2 + \lambda m, \quad z = 3 + \lambda n. \]
Intersection with \( L_1 \): For intersection, equate:
\[ -1 + \lambda l = 1 + 3\mu, \quad 2 + \lambda m = 2 + 2\mu, \quad 3 + \lambda n = -1 - 2\mu. \]
Intersection with \( L_2 \): For intersection, equate:
\[ -1 + \lambda l = -2 - 3\nu, \quad 2 + \lambda m = 2 + 4\nu, \quad 3 + \lambda n = 1 - 2\nu. \]
Solve for \( \alpha, \beta, \gamma, a, b, \) and \( c \).
Calculate:
\[ \frac{(\alpha + \beta + \gamma)^2}{a + b + c} = 196. \]
Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0 \), \( x + 2y - 31 = 0 \), and \( 9x - 2y - 19 = 0 \).
Let the point \( (h, k) \) be the image of the centroid of \( \triangle ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to:
Let \( \overrightarrow{a} = i + 2j + k \) and \( \overrightarrow{b} = 2i + 7j + 3k \).
Let \[ L_1 : \overrightarrow{r} = (-i + 2j + k) + \lambda \overrightarrow{a}, \quad \lambda \in \mathbb{R} \] and \[ L_2 : \overrightarrow{r} = (j + k) + \mu \overrightarrow{b}, \quad \mu \in \mathbb{R} \] be two lines. If the line \( L_3 \) passes through the point of intersection of \( L_1 \) and \( L_2 \), and is parallel to \( \overrightarrow{a} + \overrightarrow{b} \), then \( L_3 \) passes through the point: