Write the equation of the line passing through \( (-1, 2, 3) \) with direction ratios \( (l, m, n) \):
\[ x = -1 + \lambda l, \quad y = 2 + \lambda m, \quad z = 3 + \lambda n. \]
Intersection with \( L_1 \): For intersection, equate:
\[ -1 + \lambda l = 1 + 3\mu, \quad 2 + \lambda m = 2 + 2\mu, \quad 3 + \lambda n = -1 - 2\mu. \]
Intersection with \( L_2 \): For intersection, equate:
\[ -1 + \lambda l = -2 - 3\nu, \quad 2 + \lambda m = 2 + 4\nu, \quad 3 + \lambda n = 1 - 2\nu. \]
Solve for \( \alpha, \beta, \gamma, a, b, \) and \( c \).
Calculate:
\[ \frac{(\alpha + \beta + \gamma)^2}{a + b + c} = 196. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: