Write the equation of the line passing through \( (-1, 2, 3) \) with direction ratios \( (l, m, n) \):
\[ x = -1 + \lambda l, \quad y = 2 + \lambda m, \quad z = 3 + \lambda n. \]
Intersection with \( L_1 \): For intersection, equate:
\[ -1 + \lambda l = 1 + 3\mu, \quad 2 + \lambda m = 2 + 2\mu, \quad 3 + \lambda n = -1 - 2\mu. \]
Intersection with \( L_2 \): For intersection, equate:
\[ -1 + \lambda l = -2 - 3\nu, \quad 2 + \lambda m = 2 + 4\nu, \quad 3 + \lambda n = 1 - 2\nu. \]
Solve for \( \alpha, \beta, \gamma, a, b, \) and \( c \).
Calculate:
\[ \frac{(\alpha + \beta + \gamma)^2}{a + b + c} = 196. \]
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
Match List-I with List-II: List-I