To determine the range of \( f(x) = 3\sqrt{x-2} + \sqrt{4-x} \), we analyze the domain of \( f(x) \) by finding values of \( x \) for which both square roots are real.
Therefore, \( x \) is restricted to the interval \([2, 4]\).
Next, we evaluate \( f(x) \) at the endpoints to determine the minimum and maximum values.
Thus, the minimum value \( \alpha \) is \( \sqrt{2} \), and the maximum value \( \beta \) is \( 3\sqrt{2} \).
Now, we calculate \( \alpha^2 + 2\beta^2 \):
\[ \alpha^2 + 2\beta^2 = (\sqrt{2})^2 + 2(3\sqrt{2})^2 = 2 + 2 \times 18 = 2 + 36 = 42. \]
Therefore, \( \alpha^2 + 2\beta^2 \) is equal to 42.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
