In a △ABC, suppose y = x is the equation of the bisector of the angle B and the equation of the side AC is 2x−y = 2. If 2AB = BC and the points A and B are respectively (4, 6) and (α, β), then α + 2β is equal to:
Let's solve the given problem step by step:
Thus, the final calculation gives us \(\alpha + 2\beta = 42\), which is the correct answer.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 