The number of distinct partitions of a set \( D \) into non-empty subsets is equal to the number of equivalence relations on \( D \).
For \( D = \{a, b, c\} \), the number of distinct partitions is 3.
This corresponds to the partitions \( \{\{a\}, \{b, c\}\} \), \( \{\{a, b\}, \{c\}\} \), and \( \{\{a, b, c\}\} \).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32