The number of distinct partitions of a set \( D \) into non-empty subsets is equal to the number of equivalence relations on \( D \).
For \( D = \{a, b, c\} \), the number of distinct partitions is 3.
This corresponds to the partitions \( \{\{a\}, \{b, c\}\} \), \( \{\{a, b\}, \{c\}\} \), and \( \{\{a, b, c\}\} \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: