If the solution curve \( y = y \, x \) of the differential equation \((1 + y^2) \left(1 + \log_e x\right) dx + x \, dy = 0, \quad x > 0\) passes through the point \( (1, 1) \) and\[y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)},\]then \( \alpha + 2\beta \) is