Solution: Using the principle of inclusion-exclusion for three sets \( M \), \( P \), and \( C \), we have:
\[ |M \cup P \cup C| = |M| + |P| + |C| - |M \cap P| - |P \cap C| - |M \cap C| + |M \cap P \cap C| \]
Given:
Since \(|M \cup P \cup C| = 40\), substitute the values and solve for \(|M \cap P \cap C|\):
\[ 40 = 20 + 25 + 16 - 11 - 15 - 10 + x \]
\[ x = 10 \]
Thus, the maximum number of students who passed in all three subjects is 10.
Let \( A = (1, 2, 3, \dots, 20) \). Let \( R \subseteq A \times A \) such that \( R = \{(x, y) : y = 2x - 7 \} \). Then the number of elements in \( R \) is equal to:
Let $A = \{5n - 4n - 1 : n \in \mathbb{N}\}$ and $B = \{16(n - 1): n \in \mathbb{N}\}$ be sets. Then:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: