\(f(x) = - (p^2 - 6p + 8) \cos 4x + 2(2 - p)x + 7\)
\(f'(x) = +4 \left( p^2 - 6p + 8 \right) \sin 4x + (4 - 2p) \neq 0\)
\(\sin 4x \neq \frac{2p - 4}{4(p-4)(p-2)}\)
\(\sin 4x \neq \frac{2(p-2)}{4(p-4)(p-2)}\)
\(p \neq 2\)
\(\sin 4x = \frac{1}{2(p-4)}\)
\(\implies \left| \frac{1}{2(p-4)} \right| > 1\)
On solving, we get:
\(\therefore p \in \left( \frac{7}{2}, \frac{9}{2} \right)\)
Hence \(a = \frac{7}{2}\), \(b = \frac{9}{2}\).
\(\therefore 16ab = 252\)
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Find the intervals in which the function\[ f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11 \]
is:
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: