\[ f(x) = - (p^2 - 6p + 8)\cos 4n + 2(2 - p)n + 7 \] \[ f'(x) = +4(p^2 - 6p + 8)\sin 4x + (4 - 2p) \neq 0 \] \[ \sin 4x \neq \frac{2p - 4}{4(p - 4)(p - 2)} \] \[ \sin 4x \neq \frac{2(p - 2)}{4(p - 4)(p - 2)} \] \[ p \neq 2 \] \[ \sin 4x \neq \frac{1}{2(p - 4)} \] \[ \Rightarrow \left| \frac{1}{2(p - 4)} \right| > 1 \] on solving we get \[ \therefore p \in \left( \frac{7}{2}, \frac{9}{2} \right) \] Hence \[ a = \frac{7}{2}, \quad b = \frac{9}{2} \] \[ \therefore 16ab = 252 \]
\(f(x) = - (p^2 - 6p + 8) \cos 4x + 2(2 - p)x + 7\)
\(f'(x) = +4 \left( p^2 - 6p + 8 \right) \sin 4x + (4 - 2p) \neq 0\)
\(\sin 4x \neq \frac{2p - 4}{4(p-4)(p-2)}\)
\(\sin 4x \neq \frac{2(p-2)}{4(p-4)(p-2)}\)
\(p \neq 2\)
\(\sin 4x = \frac{1}{2(p-4)}\)
\(\implies \left| \frac{1}{2(p-4)} \right| > 1\)
On solving, we get:
\(\therefore p \in \left( \frac{7}{2}, \frac{9}{2} \right)\)
Hence \(a = \frac{7}{2}\), \(b = \frac{9}{2}\).
\(\therefore 16ab = 252\)
