>
JEE Main
>
Mathematics
List of top Mathematics Questions asked in JEE Main
The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together is:
JEE Main - 2025
JEE Main
Mathematics
Permutation and Combination
If the area of the region
{
(
x
,
y
)
:
−
1
≤
x
≤
1
,
0
≤
y
≤
a
+
e
∣
x
∣
−
e
−
x
,
a
>
0
}
\{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{|x|} - e^{-x}, a> 0\}
{(
x
,
y
)
:
−
1
≤
x
≤
1
,
0
≤
y
≤
a
+
e
∣
x
∣
−
e
−
x
,
a
>
0
}
is
e
2
+
8
e
+
1
e
,
\frac{e^2 + 8e + 1}{e},
e
e
2
+
8
e
+
1
,
then the value of
a
a
a
is:
JEE Main - 2025
JEE Main
Mathematics
Integration and Area Calculation
If in the expansion of
(
1
+
x
)
p
(
1
−
x
)
q
(1 + x)^p (1 - x)^q
(
1
+
x
)
p
(
1
−
x
)
q
, the coefficients of
x
x
x
and
x
2
x^2
x
2
are 1 and -2, respectively, then
p
2
+
q
2
p^2 + q^2
p
2
+
q
2
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Binomial Expansion
Let
x
=
x
(
y
)
x = x(y)
x
=
x
(
y
)
be the solution of the differential equation:
y
=
(
x
−
y
d
x
d
y
)
sin
(
x
y
)
,
y
>
0
and
x
(
1
)
=
π
2
.
y = \left( x - y \frac{dx}{dy} \right) \sin\left( \frac{x}{y} \right), \, y > 0 \, \text{and} \, x(1) = \frac{\pi}{2}.
y
=
(
x
−
y
d
y
d
x
)
sin
(
y
x
)
,
y
>
0
and
x
(
1
)
=
2
π
.
Then
cos
(
x
(
2
)
)
\cos(x(2))
cos
(
x
(
2
))
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Differential Equations
Three defective oranges are accidentally mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If
x
x
x
denotes the number of defective oranges, then the variance of
x
x
x
is:
JEE Main - 2025
JEE Main
Mathematics
Probability and Statistics
The area (in sq. units) of the region
(
x
,
y
)
:
0
≤
y
≤
2
∣
x
∣
+
1
,
0
≤
y
≤
x
2
+
1
,
∣
x
∣
≤
3
(x, y) : 0 \leq y \leq 2|x| + 1, 0 \leq y \leq x^2 + 1, |x| \leq 3
(
x
,
y
)
:
0
≤
y
≤
2∣
x
∣
+
1
,
0
≤
y
≤
x
2
+
1
,
∣
x
∣
≤
3
is:
JEE Main - 2025
JEE Main
Mathematics
Calculus
Let for some function
y
=
f
(
x
)
y = f(x)
y
=
f
(
x
)
,
∫
0
x
t
f
(
t
)
d
t
=
x
2
f
(
x
)
,
x
>
0
\int_0^x t f(t) \, dt = x^2 f(x), x>0
∫
0
x
t
f
(
t
)
d
t
=
x
2
f
(
x
)
,
x
>
0
and
f
(
2
)
=
3
f(2) = 3
f
(
2
)
=
3
. Then
f
(
6
)
f(6)
f
(
6
)
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Differential Equations
What is the sum of the infinite series
S
=
∑
n
=
0
∞
1
3
n
S = \sum_{n=0}^{\infty} \frac{1}{3^n}
S
=
∑
n
=
0
∞
3
n
1
?
JEE Main - 2025
JEE Main
Mathematics
Miscellaneous
Let
T
n
−
1
=
28
T_{n-1} = 28
T
n
−
1
=
28
,
T
n
=
56
T_n = 56
T
n
=
56
, and
T
n
+
1
=
70
T_{n+1} = 70
T
n
+
1
=
70
. Let A
(
4
cos
t
,
4
sin
t
)
(4\cos t, 4\sin t)
(
4
cos
t
,
4
sin
t
)
, B
(
2
sin
t
,
−
2
cos
t
)
(2\sin t, -2\cos t)
(
2
sin
t
,
−
2
cos
t
)
, and C
(
3
r
n
−
1
,
r
n
2
−
n
−
1
)
(3r_n - 1, r^2_n - n - 1)
(
3
r
n
−
1
,
r
n
2
−
n
−
1
)
be the vertices of a triangle ABC, where
t
t
t
is a parameter. If
(
3
x
−
1
)
2
+
(
3
y
)
2
=
a
(3x - 1)^2 + (3y)^2 = a
(
3
x
−
1
)
2
+
(
3
y
)
2
=
a
, is the locus of the centroid of triangle ABC, then
a
a
a
equals:
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, such that the sum of their first and last digits should not be more than 8, is:
JEE Main - 2025
JEE Main
Mathematics
permutations and combinations
If the equation of a circle is
4
x
2
+
4
y
2
−
12
x
+
8
y
=
0
4x^2 + 4y^2 - 12x + 8y = 0
4
x
2
+
4
y
2
−
12
x
+
8
y
=
0
, what is the radius of the circle?
JEE Main - 2025
JEE Main
Mathematics
Miscellaneous
What is the solution to the differential equation
d
y
d
x
=
y
x
\frac{dy}{dx} = \frac{y}{x}
d
x
d
y
=
x
y
with the initial condition
y
(
1
)
=
2
y(1) = 2
y
(
1
)
=
2
?
JEE Main - 2025
JEE Main
Mathematics
Miscellaneous
Let the equation of the circle, which touches x-axis at the point
(
a
,
0
)
(a, 0)
(
a
,
0
)
and cuts off an intercept of length
b
b
b
on y-axis be
x
2
+
y
2
−
c
x
+
d
y
+
e
=
0
x^2 + y^2 - cx + dy + e = 0
x
2
+
y
2
−
c
x
+
d
y
+
e
=
0
. If the circle lies below x-axis, then the ordered pair
(
2
a
,
b
2
)
(2a, b^2)
(
2
a
,
b
2
)
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
Let A
(
x
,
y
,
z
)
(x, y, z)
(
x
,
y
,
z
)
be a point in
x
y
xy
x
y
-plane, which is equidistant from three points (0, 3, 2), (2, 0, 3) and (0, 0, 1). Let B
(
1
,
4
,
−
1
)
(1, 4, -1)
(
1
,
4
,
−
1
)
and C
(
2
,
0
,
−
2
)
(2, 0, -2)
(
2
,
0
,
−
2
)
. Then among the statements:
(S1):
ABC is an isosceles right angled triangle, and
(S2):
the area of
△
A
B
C
\triangle ABC
△
A
BC
is
9
2
2
\frac{9\sqrt{2}}{2}
2
9
2
.
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
The value of
cos
(
sin
−
1
(
−
3
5
)
+
sin
−
1
(
5
13
)
+
sin
−
1
(
−
33
65
)
)
\cos \left( \sin^{-1} \left(-\frac{3}{5}\right) + \sin^{-1} \left(\frac{5}{13}\right) + \sin^{-1} \left(-\frac{33}{65}\right) \right)
cos
(
sin
−
1
(
−
5
3
)
+
sin
−
1
(
13
5
)
+
sin
−
1
(
−
65
33
)
)
is:
JEE Main - 2025
JEE Main
Mathematics
Trigonometric Functions
Two numbers
k
1
k_1
k
1
and
k
2
k_2
k
2
are randomly chosen from the set of natural numbers. Then, the probability that the value of
i
k
1
+
i
k
2
i^{k_1} + i^{k_2}
i
k
1
+
i
k
2
(where
i
=
−
1
i = \sqrt{-1}
i
=
−
1
) is non-zero equals:
JEE Main - 2025
JEE Main
Mathematics
Probability and Statistics
Let
T
r
T_r
T
r
be the
r
t
h
r^{th}
r
t
h
term of an A.P. If for some
m
m
m
,
T
m
=
1
25
T_m = \frac{1}{25}
T
m
=
25
1
,
T
25
=
1
20
T_{25} = \frac{1}{20}
T
25
=
20
1
, and
∑
r
=
1
25
T
r
=
13
\sum_{r=1}^{25} T_r = 13
∑
r
=
1
25
T
r
=
13
, then
5
m
∑
r
=
m
2
m
T
r
is equal to:
5m \sum_{r=m}^{2m} T_r \text{ is equal to:}
5
m
r
=
m
∑
2
m
T
r
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Arithmetic and Geometric Progressions
For the function
f
(
x
)
=
ln
(
x
2
+
1
)
f(x) = \ln(x^2 + 1)
f
(
x
)
=
ln
(
x
2
+
1
)
, what is the second derivative of
f
(
x
)
f(x)
f
(
x
)
?
JEE Main - 2025
JEE Main
Mathematics
Miscellaneous
The relation
R
=
{
(
x
,
y
)
:
x
,
y
∈
Z
and
x
+
y
is even
}
R = \{(x, y) : x, y \in \mathbb{Z} \text{ and } x + y \text{ is even} \}
R
=
{(
x
,
y
)
:
x
,
y
∈
Z
and
x
+
y
is even
}
is:
JEE Main - 2025
JEE Main
Mathematics
Relations and functions
Find the value of the integral
∫
0
π
2
sin
2
(
x
)
d
x
\int_0^{\frac{\pi}{2}} \sin^2(x) \, dx
∫
0
2
π
sin
2
(
x
)
d
x
.
JEE Main - 2025
JEE Main
Mathematics
Miscellaneous
If
f
(
x
)
=
2
x
2
x
+
2
f(x) = \frac{2^x}{2^x + \sqrt{2}}
f
(
x
)
=
2
x
+
2
2
x
,
x
∈
R
x \in \mathbb{R}
x
∈
R
, then
∑
k
=
1
81
f
(
k
82
)
\sum_{k=1}^{81} f\left(\frac{k}{82}\right)
∑
k
=
1
81
f
(
82
k
)
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Calculus
If the image of the point
(
4
,
4
,
3
)
(4, 4, 3)
(
4
,
4
,
3
)
in the line
x
−
1
2
=
y
−
2
1
=
z
−
1
3
\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{3}
2
x
−
1
=
1
y
−
2
=
3
z
−
1
is
(
a
,
β
,
γ
)
(a, \beta, \gamma)
(
a
,
β
,
γ
)
, then
a
+
β
+
γ
a + \beta + \gamma
a
+
β
+
γ
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
Let
f
:
R
→
R
f: \mathbb{R} \to \mathbb{R}
f
:
R
→
R
be a function defined by
f
(
x
)
=
(
2
+
3
a
)
x
2
+
(
a
+
2
a
−
1
)
x
+
b
,
a
≠
1
f(x) = \left( 2 + 3a \right)x^2 + \left( \frac{a+2}{a-1} \right)x + b, a \neq 1
f
(
x
)
=
(
2
+
3
a
)
x
2
+
(
a
−
1
a
+
2
)
x
+
b
,
a
=
1
. If
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
+
1
−
2
7
x
y
,
f(x + y) = f(x) + f(y) + 1 - \frac{2}{7}xy,
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
+
1
−
7
2
x
y
,
then the value of
28
∑
i
=
1
5
f
(
i
)
28 \sum_{i=1}^5 f(i)
28
∑
i
=
1
5
f
(
i
)
is:
JEE Main - 2025
JEE Main
Mathematics
Functions
Let
A
=
[
a
i
j
]
A = [a_{ij}]
A
=
[
a
ij
]
be a square matrix of order 2 with entries either 0 or 1. Let
E
E
E
be the event that
A
A
A
is an invertible matrix. Then the probability
P
(
E
)
P(E)
P
(
E
)
is:
JEE Main - 2025
JEE Main
Mathematics
Integration
Let
(
2
,
3
)
(2, 3)
(
2
,
3
)
be the largest open interval in which the function
f
(
x
)
=
2
log
e
(
x
−
2
)
−
x
2
+
a
x
+
1
f(x) = 2 \log_e (x - 2) - x^2 + ax + 1
f
(
x
)
=
2
lo
g
e
(
x
−
2
)
−
x
2
+
a
x
+
1
is strictly increasing, and
(
b
,
c
)
(b, c)
(
b
,
c
)
be the largest open interval, in which the function
g
(
x
)
=
(
x
−
1
)
3
(
x
+
2
−
a
)
2
g(x) = (x - 1)^3 (x + 2 - a)^2
g
(
x
)
=
(
x
−
1
)
3
(
x
+
2
−
a
)
2
is strictly decreasing. Then
100
(
a
+
b
−
c
)
100(a + b - c)
100
(
a
+
b
−
c
)
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Quadratic Equations
Prev
1
...
9
10
11
12
13
...
128
Next