Question:

Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______

Show Hint

The condition \( (\vec{b} - \vec{c}) \times \vec{d} = \vec{0} \) implies that \( \vec{d} \) is parallel to \( \vec{b} - \vec{c} \), so \( \vec{d} = \lambda (\vec{b} - \vec{c}) \). Use the dot product condition to find \( \lambda \), and then calculate the cross product and its magnitude squared. Alternatively, use the vector identity relating the magnitudes of the cross product and dot product.
Updated On: Apr 25, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 128

Solution and Explanation

Given 
\( \vec{b} \times \vec{d} = \vec{c} \times \vec{d} \). 
\( \vec{b} \times \vec{d} - \vec{c} \times \vec{d} = \vec{0} \) 
\( (\vec{b} - \vec{c}) \times \vec{d} = \vec{0} \) 
This implies that \( \vec{d} \) is parallel to \( \vec{b} - \vec{c} \). 
\( \vec{b} - \vec{c} = (3\hat{i} - 3\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + 2\hat{k}) = (3 - 2)\hat{i} + (-3 - (-1))\hat{j} + (3 - 2)\hat{k} = \hat{i} - 2\hat{j} + \hat{k} \) 
So, \( \vec{d} = \lambda (\vec{b} - \vec{c}) = \lambda (\hat{i} - 2\hat{j} + \hat{k}) \) 
for some scalar \( \lambda \). Given \( \vec{a} \cdot \vec{d} = 4 \). 
\( (\hat{i} + 2\hat{j} + \hat{k}) \cdot (\lambda (\hat{i} - 2\hat{j} + \hat{k})) = 4 \) 
\( \lambda ((\hat{i} + 2\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k})) = 4 \) 
\( \lambda (1(1) + 2(-2) + 1(1)) = 4 \) \( \lambda (1 - 4 + 1) = 4 \) \( \lambda (-2) = 4 \) \( \lambda = -2 \) 
Now we can find \( \vec{d} \): \( \vec{d} = -2 (\hat{i} - 2\hat{j} + \hat{k}) = -2\hat{i} + 4\hat{j} - 2\hat{k} \) 
We need to find \( |\vec{a} \times \vec{d}|^2 \). First, calculate \( \vec{a} \times \vec{d} \): \[ \vec{a} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 1 & 2 & 1 -2 & 4 & -2 \end{vmatrix} = \hat{i}(2(-2) - 1(4)) - \hat{j}(1(-2) - 1(-2)) + \hat{k}(1(4) - 2(-2)) \] \[ \vec{a} \times \vec{d} = \hat{i}(-4 - 4) - \hat{j}(-2 + 2) + \hat{k}(4 + 4) = -8\hat{i} - 0\hat{j} + 8\hat{k} = -8\hat{i} + 8\hat{k} \] Now, find the magnitude squared: \[ |\vec{a} \times \vec{d}|^2 = (-8)^2 + (0)^2 + (8)^2 = 64 + 0 + 64 = 128 \] 
Alternatively, using the identity \( |\vec{a} \times \vec{d}|^2 + (\vec{a} \cdot \vec{d})^2 = |\vec{a}|^2 |\vec{d}|^2 \): 
\( |\vec{a}|^2 = 1^2 + 2^2 + 1^2 = 1 + 4 + 1 = 6 \) \( |\vec{d}|^2 = (-2)^2 + (4)^2 + (-2)^2 = 4 + 16 + 4 = 24 \) \( (\vec{a} \cdot \vec{d})^2 = (4)^2 = 16 \) \( |\vec{a} \times \vec{d}|^2 = |\vec{a}|^2 |\vec{d}|^2 - (\vec{a} \cdot \vec{d})^2 = 6 \times 24 - 16 = 144 - 16 = 128 \)

Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions