Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Given
\( \vec{b} \times \vec{d} = \vec{c} \times \vec{d} \).
\( \vec{b} \times \vec{d} - \vec{c} \times \vec{d} = \vec{0} \)
\( (\vec{b} - \vec{c}) \times \vec{d} = \vec{0} \)
This implies that \( \vec{d} \) is parallel to \( \vec{b} - \vec{c} \).
\( \vec{b} - \vec{c} = (3\hat{i} - 3\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + 2\hat{k}) = (3 - 2)\hat{i} + (-3 - (-1))\hat{j} + (3 - 2)\hat{k} = \hat{i} - 2\hat{j} + \hat{k} \)
So, \( \vec{d} = \lambda (\vec{b} - \vec{c}) = \lambda (\hat{i} - 2\hat{j} + \hat{k}) \)
for some scalar \( \lambda \). Given \( \vec{a} \cdot \vec{d} = 4 \).
\( (\hat{i} + 2\hat{j} + \hat{k}) \cdot (\lambda (\hat{i} - 2\hat{j} + \hat{k})) = 4 \)
\( \lambda ((\hat{i} + 2\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k})) = 4 \)
\( \lambda (1(1) + 2(-2) + 1(1)) = 4 \) \( \lambda (1 - 4 + 1) = 4 \) \( \lambda (-2) = 4 \) \( \lambda = -2 \)
Now we can find \( \vec{d} \): \( \vec{d} = -2 (\hat{i} - 2\hat{j} + \hat{k}) = -2\hat{i} + 4\hat{j} - 2\hat{k} \)
We need to find \( |\vec{a} \times \vec{d}|^2 \). First, calculate \( \vec{a} \times \vec{d} \): \[ \vec{a} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 1 & 2 & 1 -2 & 4 & -2 \end{vmatrix} = \hat{i}(2(-2) - 1(4)) - \hat{j}(1(-2) - 1(-2)) + \hat{k}(1(4) - 2(-2)) \] \[ \vec{a} \times \vec{d} = \hat{i}(-4 - 4) - \hat{j}(-2 + 2) + \hat{k}(4 + 4) = -8\hat{i} - 0\hat{j} + 8\hat{k} = -8\hat{i} + 8\hat{k} \] Now, find the magnitude squared: \[ |\vec{a} \times \vec{d}|^2 = (-8)^2 + (0)^2 + (8)^2 = 64 + 0 + 64 = 128 \]
Alternatively, using the identity \( |\vec{a} \times \vec{d}|^2 + (\vec{a} \cdot \vec{d})^2 = |\vec{a}|^2 |\vec{d}|^2 \):
\( |\vec{a}|^2 = 1^2 + 2^2 + 1^2 = 1 + 4 + 1 = 6 \) \( |\vec{d}|^2 = (-2)^2 + (4)^2 + (-2)^2 = 4 + 16 + 4 = 24 \) \( (\vec{a} \cdot \vec{d})^2 = (4)^2 = 16 \) \( |\vec{a} \times \vec{d}|^2 = |\vec{a}|^2 |\vec{d}|^2 - (\vec{a} \cdot \vec{d})^2 = 6 \times 24 - 16 = 144 - 16 = 128 \)
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)