The foci of the ellipse are \( (\pm ae, 0) = (\pm 2, 0) \).
Given eccentricity \( e = \frac{1}{2} \), we have \( a \cdot \frac{1}{2} = 2 \Rightarrow a = 4 \).
For the ellipse, \( b^2 = a^2(1 - e^2) = 4^2(1 - (\frac{1}{2})^2) = 16(1 - \frac{1}{4}) = 16(\frac{3}{4}) = 12 \). So \( b = \sqrt{12} = 2\sqrt{3} \).
The equation of the ellipse is \( \frac{x^2}{16} + \frac{y^2}{12} = 1 \).
The intersection of the ellipse with the negative y-axis is found by setting \( x = 0 \): \( \frac{0}{16} + \frac{y^2}{12} = 1 \Rightarrow y^2 = 12 \Rightarrow y = \pm 2\sqrt{3} \).
The point of intersection with the negative y-axis is \( (0, -2\sqrt{3}) \).
The circle of minimum area enclosing the ellipse has the major axis as its diameter.
The radius of the circle C is \( a = 4 \), and its center is \( (0, 0) \). The equation of the circle C is \( x^2 + y^2 = 16 \).
The side QR of the triangle PQR has length 29 and is parallel to the major axis (x-axis) and contains the point \( (0, -2\sqrt{3}) \).
Let the coordinates of Q and R be \( (x_1, -2\sqrt{3}) \) and \( (x_2, -2\sqrt{3}) \).
The length of QR is \( |x_2 - x_1| = 29 \). We can take \( x_1 = -\frac{29}{2} \) and \( x_2 = \frac{29}{2} \). So, \( Q = (-\frac{29}{2}, -2\sqrt{3}) \) and \( R = (\frac{29}{2}, -2\sqrt{3}) \).
The vertex P lies on the circle \( x^2 + y^2 = 16 \). Let \( P = (4 \cos \theta, 4 \sin \theta) \).
The area of the triangle PQR is \( \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times QR \times |y_P - y_{QR}| = \frac{1}{2} \times 29 \times |4 \sin \theta - (-2\sqrt{3})| = \frac{29}{2} |4 \sin \theta + 2\sqrt{3}| \).
The maximum value of \( |4 \sin \theta + 2\sqrt{3}| \) occurs when \( \sin \theta = 1 \) or \( \sin \theta = -1 \). If \( \sin \theta = 1 \), \( |4(1) + 2\sqrt{3}| = 4 + 2\sqrt{3} \). If \( \sin \theta = -1 \), \( |4(-1) + 2\sqrt{3}| = |-4 + 2\sqrt{3}| = 4 - 2\sqrt{3} \) (since \( 4>2\sqrt{3} \)).
The maximum height is \( 4 + 2\sqrt{3} \). Maximum area = \( \frac{1}{2} \times 29 \times (4 + 2\sqrt{3}) = \frac{29}{2} (4 + 2\sqrt{3}) = 29 (2 + \sqrt{3}) \).
There seems to be a discrepancy with the provided solution in the image.
Let's follow the logic in the image. The image assumes the base of the triangle is \( 2a = 8 \).
The height is \( a \sin \theta + b = 4 \sin \theta + 2\sqrt{3} \).
Maximum height is \( 4(1) + 2\sqrt{3} = 4 + 2\sqrt{3} \).
Maximum area \( = \frac{1}{2} \times 8 \times (4 + 2\sqrt{3}) = 4(4 + 2\sqrt{3}) = 16 + 8\sqrt{3} = 8(2 + \sqrt{3}) \).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: