1. Identify the sets $A$ and $B$: - $A: x^2 + y^2 = 25$ - $B: \frac{x^2}{144} + \frac{y^2}{16} = 1$
2. Solve for the intersection $D = A \cap B$:
- Substitute $x^2 + y^2 = 25$ into $x^2 + 9y^2 = 144$: \[ x^2 + 9(25 - x^2) = 144 \] \[ x^2 + 225 - 9x^2 = 144 \] \[ -8x^2 = 144 - 225 \] \[ -8x^2 = -81 \] \[ x^2 = \frac{81}{8} \] \[ x = \pm \frac{9}{2\sqrt{2}} \] - Substitute $x$ back into $x^2 + y^2 = 25$: \[ y^2 = 25 - \frac{81}{8} \] \[ y = \pm \frac{\sqrt{119}}{2\sqrt{2}} \]
3. Determine the elements of set $D$: \[ D = \left\{\left(\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right)\right\} \] - Number of elements in set $D = 4$.
4. Identify the set $C$: \[ C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\} \] - Possible pairs $(x, y)$: \[ \{(0, 2), (2, 0), (0, -2), (-2, 0), (1, 1), (-1, -1), (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1), (0, 0)\} \] - Number of elements in set $C = 13$.
5. Calculate the total number of one-one functions from set $D$ to set $C$: \[ \text{Total number of one-one functions} = 13 \times 12 \times 11 \times 10 = 17160 \] Therefore, the correct answer is (3) 17160.
We need the number of one–one (injective) functions from \(D=A\cap B\) to \(C\), where
\[ A=\{(x,y)\in\mathbb{R}^2:x^2+y^2=25\},\quad B=\{(x,y)\in\mathbb{R}^2:x^2+9y^2=144\},\quad C=\{(x,y)\in\mathbb{Z}^2:x^2+y^2\le 4\}. \]
Find \(|D|\) by solving the system for intersection points. Count \(|C|\) by enumerating integer lattice points with \(x^2+y^2\le 4\). The number of injective functions from a set of size \(m\) to a set of size \(n\) is the permutation \( ^nP_m = \dfrac{n!}{(n-m)!} \).
Step 1: Compute \(D=A\cap B\) by solving the system:
\[ \begin{cases} x^2+y^2=25,\\ x^2+9y^2=144. \end{cases} \] \[ \text{Subtract: }(x^2+9y^2)-(x^2+y^2)=144-25 \;\Rightarrow\; 8y^2=119 \;\Rightarrow\; y^2=\frac{119}{8}. \] \[ x^2=25-y^2=25-\frac{119}{8}=\frac{81}{8}. \]
Thus the intersection points are \( (\pm \sqrt{81/8},\,\pm \sqrt{119/8}) \). All sign choices are allowed, giving
\[ |D|=4. \]
Step 2: Count \(|C|\): integer pairs with \(x^2+y^2\le 4\).
\[ \begin{aligned} x^2+y^2=0 &: (0,0)\quad \Rightarrow 1,\\ x^2+y^2=1 &: (\pm1,0),(0,\pm1)\quad \Rightarrow 4,\\ x^2+y^2=2 &: (\pm1,\pm1)\quad \Rightarrow 4,\\ x^2+y^2=4 &: (\pm2,0),(0,\pm2)\quad \Rightarrow 4. \end{aligned} \] \[ |C|=1+4+4+4=13. \]
Step 3: Number of one–one functions from \(D\) to \(C\):
\[ {}^{13}P_{4}=\frac{13!}{(13-4)!}=13\cdot 12\cdot 11\cdot 10=17160. \]
The total number of one–one functions from \(D\) to \(C\) is 17160.
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
Let the domain of the function \( f(x) = \log_{2} \log_{4} \log_{6}(3 + 4x - x^{2}) \) be \( (a, b) \). If \[ \int_{0}^{b-a} [x^{2}] \, dx = p - \sqrt{q} - \sqrt{r}, \quad p, q, r \in \mathbb{N}, \, \gcd(p, q, r) = 1, \] where \([ \, ]\) is the greatest integer function, then \( p + q + r \) is equal to
Arrange the following in increasing order of solubility product:
\[ {Ca(OH)}_2, {AgBr}, {PbS}, {HgS} \]
For a short dipole placed at origin O, the dipole moment P is along the X-axis, as shown in the figure. If the electric potential and electric field at A are V and E respectively, then the correct combination of the electric potential and electric field, respectively, at point B on the Y-axis is given by:
