1. Identify the sets $A$ and $B$: - $A: x^2 + y^2 = 25$ - $B: \frac{x^2}{144} + \frac{y^2}{16} = 1$
2. Solve for the intersection $D = A \cap B$:
- Substitute $x^2 + y^2 = 25$ into $x^2 + 9y^2 = 144$: \[ x^2 + 9(25 - x^2) = 144 \] \[ x^2 + 225 - 9x^2 = 144 \] \[ -8x^2 = 144 - 225 \] \[ -8x^2 = -81 \] \[ x^2 = \frac{81}{8} \] \[ x = \pm \frac{9}{2\sqrt{2}} \] - Substitute $x$ back into $x^2 + y^2 = 25$: \[ y^2 = 25 - \frac{81}{8} \] \[ y = \pm \frac{\sqrt{119}}{2\sqrt{2}} \]
3. Determine the elements of set $D$: \[ D = \left\{\left(\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right)\right\} \] - Number of elements in set $D = 4$.
4. Identify the set $C$: \[ C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\} \] - Possible pairs $(x, y)$: \[ \{(0, 2), (2, 0), (0, -2), (-2, 0), (1, 1), (-1, -1), (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1), (0, 0)\} \] - Number of elements in set $C = 13$.
5. Calculate the total number of one-one functions from set $D$ to set $C$: \[ \text{Total number of one-one functions} = 13 \times 12 \times 11 \times 10 = 17160 \] Therefore, the correct answer is (3) 17160.
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: