1. Identify the sets $A$ and $B$: - $A: x^2 + y^2 = 25$ - $B: \frac{x^2}{144} + \frac{y^2}{16} = 1$
2. Solve for the intersection $D = A \cap B$:
- Substitute $x^2 + y^2 = 25$ into $x^2 + 9y^2 = 144$: \[ x^2 + 9(25 - x^2) = 144 \] \[ x^2 + 225 - 9x^2 = 144 \] \[ -8x^2 = 144 - 225 \] \[ -8x^2 = -81 \] \[ x^2 = \frac{81}{8} \] \[ x = \pm \frac{9}{2\sqrt{2}} \] - Substitute $x$ back into $x^2 + y^2 = 25$: \[ y^2 = 25 - \frac{81}{8} \] \[ y = \pm \frac{\sqrt{119}}{2\sqrt{2}} \]
3. Determine the elements of set $D$: \[ D = \left\{\left(\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, \frac{\sqrt{119}}{2\sqrt{2}}\right), \left(-\frac{9}{2\sqrt{2}}, -\frac{\sqrt{119}}{2\sqrt{2}}\right)\right\} \] - Number of elements in set $D = 4$.
4. Identify the set $C$: \[ C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\} \] - Possible pairs $(x, y)$: \[ \{(0, 2), (2, 0), (0, -2), (-2, 0), (1, 1), (-1, -1), (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1), (0, 0)\} \] - Number of elements in set $C = 13$. 5. Calculate the total number of one-one functions from set $D$ to set $C$: \[ \text{Total number of one-one functions} = 13 \times 12 \times 11 \times 10 = 17160 \] Therefore, the correct answer is (3) 17160.
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to