\begin{center}
\includegraphics{11S.png}
\end{center}
The region is defined by the inequalities:
\[
|x - y| \le y \quad \text{and} \quad y \le 4\sqrt{x}
\]
The first inequality \( |x - y| \le y \) can be written as:
\[
-y \le x - y \le y
\]
This splits into two inequalities:
\[
-y \le x - y \implies 0 \le x
\]
\[
x - y \le y \implies x \le 2y \implies y \ge \frac{x}{2}
\]
So, the region is bounded by \( y \ge \frac{x}{2} \), \( y \le 4\sqrt{x} \), and \( x \ge 0 \).
To find the intersection points of the curves \( y = \frac{x}{2} \) and \( y = 4\sqrt{x} \), we set them equal:
\[
\frac{x}{2} = 4\sqrt{x}
\]
\[
x = 8\sqrt{x}
\]
Squaring both sides:
\[
x^2 = 64x
\]
\[
x^2 - 64x = 0
\]
\[
x(x - 64) = 0
\]
The solutions are \( x = 0 \) and \( x = 64 \). The corresponding \( y \) values are \( y = 0 \) and \( y = \frac{64}{2} = 32 \). The intersection points are \( (0, 0) \) and \( (64, 32) \).
The area of the region can be found by integrating the difference between the upper and lower bounds of \( y \) with respect to \( x \) from \( 0 \) to \( 64 \):
\[
\text{Area} = \int_{0}^{64} \left( 4\sqrt{x} - \frac{x}{2} \right) dx
\]
\[
\text{Area} = \int_{0}^{64} \left( 4x^{1/2} - \frac{1}{2}x \right) dx
\]
\[
\text{Area} = \left[ 4 \frac{x^{3/2}}{3/2} - \frac{1}{2} \frac{x^2}{2} \right]_{0}^{64}
\]
\[
\text{Area} = \left[ \frac{8}{3} x^{3/2} - \frac{1}{4} x^2 \right]_{0}^{64}
\]
\[
\text{Area} = \left( \frac{8}{3} (64)^{3/2} - \frac{1}{4} (64)^2 \right) - \left( \frac{8}{3} (0)^{3/2} - \frac{1}{4} (0)^2 \right)
\]
\[
\text{Area} = \frac{8}{3} (8^2)^{3/2} - \frac{1}{4} (4096)
\]
\[
\text{Area} = \frac{8}{3} (8^3) - 1024
\]
\[
\text{Area} = \frac{8}{3} (512) - 1024
\]
\[
\text{Area} = \frac{4096}{3} - \frac{3072}{3}
\]
\[
\text{Area} = \frac{1024}{3}
\]