Step 1: Approximate the functions for small values of \( x \).
We apply small angle approximations: \( \tan(x) \approx x \) as \( x \to 0 \), \( \tan^{-1}(x) \approx x \) as \( x \to 0 \), \( \log(1 + 3x^2) \approx 3x^2 \), \( e^x - 1 \approx x \) for small \( x \).
Substituting in the expression:
\( \tan\left(5x^{\frac{1}{3}}\right) \approx 5x^{\frac{1}{3}} \), \( \log\left(1 + 3x^2\right) \approx 3x^2 \), \( \tan^{-1}\left(3\sqrt{x}\right) \approx 3\sqrt{x} \), \( e^{5x^{\frac{4}{3}}} - 1 \approx 5x^{\frac{4}{3}} \).
Substitute these approximations into the given expression: \[ \frac{5x^{\frac{1}{3}} \cdot 3x^2}{(3\sqrt{x})^2 \cdot 5x^{\frac{4}{3}}} \]
Step 2: Simplifying the expression.
Simplify the numerator and denominator: \[ \frac{15x^{\frac{7}{3}}}{9x \cdot 5x^{\frac{4}{3}}} \] This simplifies to: \[ \frac{15x^{\frac{7}{3}}}{45x^{\frac{7}{3}}} \]
Step 3: Taking the limit as \( x \to 0 \)
. As \( x \to 0 \), the expression simplifies to: \[ \frac{15}{45} = \frac{1}{3} \]
Thus, the final answer is: \[ \frac{1}{3} \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).