Step 1: Approximate the functions for small values of \( x \).
We apply small angle approximations: \( \tan(x) \approx x \) as \( x \to 0 \), \( \tan^{-1}(x) \approx x \) as \( x \to 0 \), \( \log(1 + 3x^2) \approx 3x^2 \), \( e^x - 1 \approx x \) for small \( x \).
Substituting in the expression:
\( \tan\left(5x^{\frac{1}{3}}\right) \approx 5x^{\frac{1}{3}} \), \( \log\left(1 + 3x^2\right) \approx 3x^2 \), \( \tan^{-1}\left(3\sqrt{x}\right) \approx 3\sqrt{x} \), \( e^{5x^{\frac{4}{3}}} - 1 \approx 5x^{\frac{4}{3}} \).
Substitute these approximations into the given expression: \[ \frac{5x^{\frac{1}{3}} \cdot 3x^2}{(3\sqrt{x})^2 \cdot 5x^{\frac{4}{3}}} \]
Step 2: Simplifying the expression.
Simplify the numerator and denominator: \[ \frac{15x^{\frac{7}{3}}}{9x \cdot 5x^{\frac{4}{3}}} \] This simplifies to: \[ \frac{15x^{\frac{7}{3}}}{45x^{\frac{7}{3}}} \]
Step 3: Taking the limit as \( x \to 0 \)
. As \( x \to 0 \), the expression simplifies to: \[ \frac{15}{45} = \frac{1}{3} \]
Thus, the final answer is: \[ \frac{1}{3} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: