If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
For the function \( f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) \) to be defined, we need two conditions to be satisfied:
The argument of the outer logarithm must be positive: \[ 1 - \log_4(x^2 - 9x + 18)>0 \] \[ 1>\log_4(x^2 - 9x + 18) \] \[ 4^1>x^2 - 9x + 18 \] \[ 4>x^2 - 9x + 18 \] \[ 0>x^2 - 9x + 14 \] \[ x^2 - 9x + 14<0 \] Factoring the quadratic: \[ (x - 2)(x - 7)<0 \] This inequality holds for \( 2<x<7 \). So, \( x \in (2, 7) \). \quad ...(2)
The argument of the inner logarithm must be positive: \[ x^2 - 9x + 18>0 \] Factoring the quadratic: \[ (x - 3)(x - 6)>0 \] This inequality holds for \( x<3 \) or \( x>6 \). So, \( x \in (-\infty, 3) \cup (6, \infty) \). \quad ...(1)
The domain of the function is the intersection of the intervals obtained from conditions (1) and (2). Intersection of \( (-\infty, 3) \) and \( (2, 7) \) is \( (2, 3) \). Intersection of \( (6, \infty) \) and \( (2, 7) \) is \( (6, 7) \).
Therefore, the domain of the function is \( (2, 3) \cup (6, 7) \). Given that the domain is \( (\alpha, \beta) \cup (\gamma, \delta) \), we have: \( \alpha = 2 \), \( \beta = 3 \),
\( \gamma = 6 \), \( \delta = 7 \). The value of \( \alpha + \beta + \gamma + \delta \) is: \[ \alpha + \beta + \gamma + \delta = 2 + 3 + 6 + 7 = 18 \]
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
Match List-I with List-II: List-I