If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
For the function \( f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) \) to be defined, we need two conditions to be satisfied:
The argument of the outer logarithm must be positive: \[ 1 - \log_4(x^2 - 9x + 18)>0 \] \[ 1>\log_4(x^2 - 9x + 18) \] \[ 4^1>x^2 - 9x + 18 \] \[ 4>x^2 - 9x + 18 \] \[ 0>x^2 - 9x + 14 \] \[ x^2 - 9x + 14<0 \] Factoring the quadratic: \[ (x - 2)(x - 7)<0 \] This inequality holds for \( 2<x<7 \). So, \( x \in (2, 7) \). \quad ...(2)
The argument of the inner logarithm must be positive: \[ x^2 - 9x + 18>0 \] Factoring the quadratic: \[ (x - 3)(x - 6)>0 \] This inequality holds for \( x<3 \) or \( x>6 \). So, \( x \in (-\infty, 3) \cup (6, \infty) \). \quad ...(1)
The domain of the function is the intersection of the intervals obtained from conditions (1) and (2). Intersection of \( (-\infty, 3) \) and \( (2, 7) \) is \( (2, 3) \). Intersection of \( (6, \infty) \) and \( (2, 7) \) is \( (6, 7) \).
Therefore, the domain of the function is \( (2, 3) \cup (6, 7) \). Given that the domain is \( (\alpha, \beta) \cup (\gamma, \delta) \), we have: \( \alpha = 2 \), \( \beta = 3 \),
\( \gamma = 6 \), \( \delta = 7 \). The value of \( \alpha + \beta + \gamma + \delta \) is: \[ \alpha + \beta + \gamma + \delta = 2 + 3 + 6 + 7 = 18 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Let $ A $ be the set of all functions $ f: \mathbb{Z} \to \mathbb{Z} $ and $ R $ be a relation on $ A $ such that $$ R = \{ (f, g) : f(0) = g(1) \text{ and } f(1) = g(0) \} $$ Then $ R $ is:
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]