If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
For the function \( f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) \) to be defined, we need two conditions to be satisfied:
The argument of the outer logarithm must be positive: \[ 1 - \log_4(x^2 - 9x + 18)>0 \] \[ 1>\log_4(x^2 - 9x + 18) \] \[ 4^1>x^2 - 9x + 18 \] \[ 4>x^2 - 9x + 18 \] \[ 0>x^2 - 9x + 14 \] \[ x^2 - 9x + 14<0 \] Factoring the quadratic: \[ (x - 2)(x - 7)<0 \] This inequality holds for \( 2<x<7 \). So, \( x \in (2, 7) \). \quad ...(2)
The argument of the inner logarithm must be positive: \[ x^2 - 9x + 18>0 \] Factoring the quadratic: \[ (x - 3)(x - 6)>0 \] This inequality holds for \( x<3 \) or \( x>6 \). So, \( x \in (-\infty, 3) \cup (6, \infty) \). ...(1)
The domain of the function is the intersection of the intervals obtained from conditions (1) and (2). Intersection of \( (-\infty, 3) \) and \( (2, 7) \) is \( (2, 3) \). Intersection of \( (6, \infty) \) and \( (2, 7) \) is \( (6, 7) \).
Therefore, the domain of the function is \( (2, 3) \cup (6, 7) \). Given that the domain is \( (\alpha, \beta) \cup (\gamma, \delta) \), we have: \( \alpha = 2 \), \( \beta = 3 \),
\( \gamma = 6 \), \( \delta = 7 \). The value of \( \alpha + \beta + \gamma + \delta \) is: \[ \alpha + \beta + \gamma + \delta = 2 + 3 + 6 + 7 = 18 \]
To determine the domain of the function \( f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) \), we must ensure that the arguments of all logarithmic functions are positive.
First, ensure the argument of the inner logarithm is positive:
Next, the expression for the outer logarithm's argument must be positive:
The combined solution requires both conditions to be satisfied simultaneously:
The valid intersections are:
According to the problem, \( \alpha = 2\), \( \beta = 3\), \( \gamma = 6\), and \( \delta = 7 \). Therefore, the sum \(\alpha + \beta + \gamma + \delta = 2 + 3 + 6 + 7 = 18\).
Therefore, the answer is 18.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
Let $ A $ be the set of all functions $ f: \mathbb{Z} \to \mathbb{Z} $ and $ R $ be a relation on $ A $ such that $$ R = \{ (f, g) : f(0) = g(1) \text{ and } f(1) = g(0) \} $$ Then $ R $ is:
For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: